首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在[0,1]上连续,在(0,1)内可导,且证明: (Ⅰ)存在c∈(0,1),使得f(c)=0; (Ⅱ)存在ξ∈(0,1),使得f"(ξ)=f(ξ); (Ⅲ)存在η∈(0,1),使得f"(η)一3f’(η)+2f(η)=0.
设f(x)在[0,1]上连续,在(0,1)内可导,且证明: (Ⅰ)存在c∈(0,1),使得f(c)=0; (Ⅱ)存在ξ∈(0,1),使得f"(ξ)=f(ξ); (Ⅲ)存在η∈(0,1),使得f"(η)一3f’(η)+2f(η)=0.
admin
2014-11-26
90
问题
设f(x)在[0,1]上连续,在(0,1)内可导,且
证明:
(Ⅰ)存在c∈(0,1),使得f(c)=0;
(Ⅱ)存在ξ∈(0,1),使得f"(ξ)=f(ξ);
(Ⅲ)存在η∈(0,1),使得f"(η)一3f’(η)+2f(η)=0.
选项
答案
(Ⅰ)由[*]得 f(0)=0,f
+
’(0)=1,f(1)=0,f
-
’(1)=2.由f
+
’(0)>0,存在x
1
∈(0,1),使得f(x
1
)>f(0)=0;由f
1
’(1)>0,存在x
2
∈(0,1),使得f(x
2
)<f(1)=0.因为f(x
1
)f(x
2
)<0,所以由零点定理,存在c∈(0,1),使得f(c)=0. (Ⅱ)令h(x)=e
x
f(x),因为f(0)=f(c)=f(1)=0,所以h(0)=h(c)=h(1)=0,由罗尔定理,存在ξ
1
∈(0,c),ξ
2
∈(c,1),使得h’(ξ
1
)=h’(ξ
2
)=0,而h’(x)=e
x
[f(x)+f’(x)]且e
x
≠0,所以f(ξ
1
)+f’(ξ
1
)=0,f(ξ
2
)+f’(ξ
2
)=0. 令φ(z)=e
-x
[f(x)+f’(x)],因为φ(ξ
1
)=φ(ξ
2
)=0,所以存在ξ∈(ξ
1
,ξ
2
)[*](0,1),使得φ’(ξ)=0,而φ’(x)=e
-x
[f"(x)-f(x)]且e
-x
≠0,于是f"(ξ)=f(ξ). (Ⅲ)令h(x=)e
x
f(x),因为f(0)=f(c)=f(1)=0,所以h(0)=h(c)=h(1)=0. 由罗尔定理,存在η
1
∈(0,c),η
2
∈(c,1),使得h’(η
1
)=h’(η
2
)=0,而 h’(x)=e
-x
[f’(x)一f(x)]且e
-x
≠0,所以f’(η
1
)一f(η
1
)=0,f’(η
2
)一f(η
2
)=0. 令φ(x)=e
-2x
[f’(x)一f(x)],因为φ(η
1
)=φ(η
2
)=0,所以存在η∈(η
1
,η
2
)[*](0,1),使得φ’(η)=0,而φ’(x)=e
-2x
[f"(x)一3f’(x)+2f(x)]且e
-2x
≠0,于是 f"(η)一3f’(η)+2f(η)=0.
解析
转载请注明原文地址:https://kaotiyun.com/show/oe54777K
0
考研数学一
相关试题推荐
已知线性方程组的通解为[2,1,0,1]T+k[1,-1,2,0]T.记αj=[a1j,a2j,a3j,a4j]T,j=1,2,…,5.问:α4能否由α1,α2,α3线性表出,说明理由.
设α1,α2,α3是四元非齐次线性方程组Ax=b的三个解向量,且r(A)=3,α1[1,2,3,4]T,α2+α3=[0,1,2,3]T,k是任意常数,则方程组Ax=b的通解是().
设区域D={(x,y)|x2+y2≤4,x≥0,y≥0},求x2(x2+y2)dxdy.
设f(u)具有二阶连续导数,且
求一个以y1=tet,y2=sin2t为两个特解的四阶常系数齐次线性微分方程,并求其通解.
由曲线y=x2,y=x+2所围成的平面薄片,其上各点处的面密度μ=1+x2,则此薄片的质量M=_______.
求微分方程满足条件y|x=0=0,y’|x=0=0且在x=处可导的特解.
已知曲线y=x3-3a2x+b与x轴相切,则b2可以通过a表示为b2=_______.
一辆机场交通车载有25名乘客途经9个站,每位乘客都等可能在这9个站中任意一站下车(且不受其他乘客下车与否的影响),交通车只在有乘客下车时才停车,令随机变量Yi表示在第i站下车的乘客数,i=1,2,…,Xi在有乘客下车时取值为1,否则取值为0.求:(Xi
随机试题
A.支链氨基酸B.谷氨酸钠C.新霉素D.乳果糖增加肠道氨排出的药物是
属于双极导联的是
甲公司于2016年1月1日购入A公司同日发行的3年期公司债券,作为持有至到期投资核算。购买该债券共支付价款10560.42万元,债券面值10000万元,每年12月31日付息一次,到期还本,票面年利率6%,实际年利率4%。采用实际利率法摊销,则甲公司20
“犹留正气参天地,永剩丹心照古今”,这副对联所指的历史人物是()。
“十二五”规划与此前的规划比较,一个突出亮点就是过去的规划更多的是追求“国强”,而“十二五”规划则更多强调“民富”。以下举措体现这一亮点的有()。
A.溃疡边缘不隆起,呈斜漏斗状B.黏膜皱襞向溃疡集中C.两者均有D.两者均无溃疡型胃癌的表现是
一棵含有n个结点的k叉树,可能达到的最大深度为(),最小深度为()。
Whenwearereading,theimportantthingistograsptheessentialmeaning,nottolearneverysingleword.
Theincreasingpopularityofelectricvehiclesandplug-inhybridelectricvehiclesisattributedtothesavingsinfuelcostsc
A、Becausehewantstoknowsomenews.B、Becausehewantstoseethehouseads.C、Becausehewantstofindajob.D、Becausehewa
最新回复
(
0
)