首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在[0,1]上连续,∫01f(x)dx=0,g(x)在[0,1]上有连续的导数,且在(0,1)内g’(x)≠0,∫01f(x)g(x)dx=0,试证:至少存在两个不同的点ξ1,ξ2∈(0,1),使得f(ξ1)=f(ξ2)=0.
设f(x)在[0,1]上连续,∫01f(x)dx=0,g(x)在[0,1]上有连续的导数,且在(0,1)内g’(x)≠0,∫01f(x)g(x)dx=0,试证:至少存在两个不同的点ξ1,ξ2∈(0,1),使得f(ξ1)=f(ξ2)=0.
admin
2017-05-31
46
问题
设f(x)在[0,1]上连续,∫
0
1
f(x)dx=0,g(x)在[0,1]上有连续的导数,且在(0,1)内g’(x)≠0,∫
0
1
f(x)g(x)dx=0,试证:至少存在两个不同的点ξ
1
,ξ
2
∈(0,1),使得f(ξ
1
)=f(ξ
2
)=0.
选项
答案
令F(x)=∫
0
x
f(t)dt,则F(0)=F(1)=0. 又0=∫
0
1
f(x)g(x)dx=∫
0
1
g(x)dF(x)=g(x)F(x)|
0
1
-∫
0
1
F(x)g’(x)dx=-∫
0
1
F(x)g’(x)dx 即有∫
0
1
F(x)g’(x)dx=0,由积分中值定理,存在点ξ∈(0,1),使得F(ξ)g’(ξ)=0,由g’(x)≠0知F(ξ)=0,0<ξ<1. 即F(0)=F(ξ)=F(1)=0, 由洛尔定理,存在点ξ
1
∈(0,ξ),ξ
2
∈(ξ,1),使得F’(ξ
1
)=F’(ξ
2
)=0,即f(ξ
1
)=f(ξ
2
)=0.
解析
在f(x)连续的条件下,欲证f(x)存在两个零点f(ξ
1
)=0,f(ξ
2
)=0,可构造辅助函数F(x)=∫
0
x
f(t)dt,用洛尔定理证明.因已知F(0)=F(1)=0.于是,问题的关键是再找一点ξ,使得F(ξ)=0,这样的点ξ可由已知条件得到.
在只知函数f(x)连续的条件下,证明f(x)在[a,b]内存在零点的问题,可以对f(x)用介值定理证明,也可对f(x)的原函数F(x)=∫
a
x
f(t)dt用洛尔定理证明.
转载请注明原文地址:https://kaotiyun.com/show/oeu4777K
0
考研数学一
相关试题推荐
A、 B、 C、 D、 B
设f(x),g(x)在[a,b]上连续,(a,b)内可导,证明存在ε∈(a,b),使得[f(b)-f(a)]gˊ(ε)=[g(b)-g(a)]fˊ(ε)
哪项是偶函数
求不定积分csc3xdx.
设f(x)是连续函数利用定义证明函数可导,且F’(x)=f(x);
设函数f(x)在(-∞,+∞)内单调有界,{xn}为数列,下列命题正确的是
设y=ex(C1sinx+C2cosx)(C1,C2为任意常数)为某二阶常系数线性齐次微分方程的通解,则该方程为__________.
设函数f(x)在[a,b]上连续,在(a,b)内可导,且f’(x)≠0,试证存在ξ,η∈(a,b),使得
已知二次曲面X2+4y2+3z2+2axy+2xz+2(a一2)yz=1是椭球面,则a的取值为____________.
随机试题
Inthisworldofchangeandcomplexity,theneedforinformationisofgreatestimportance.Thosepeoplewhohaveaccurate,reli
张某系个体工商户,经营小食品店,两年来一直未向税务机关交足税款,此事被乡政府在一次对市场经营的食品质量大检查时发现。乡政府以自己的名义给张某下达两次补交税款1100元的通知,张某均未按通知补税。2005年5月24日乡政府扣押了张某的一台电冰箱与部分食品,当
虫积兼脾虚便溏者忌服的药物是
能起到加强表里两经在体表的联系和渗灌气血的作用的是
肾小管性酸中毒的诊断依据有
居住国政府对其居民在国外得到的所得税减免优惠的部分,视同在国外实际缴纳的税款给予税收抵免的方法称为()。
河豚毒素含量最高的为河豚鱼的()。
13世纪后半期,佛罗伦萨市政府决定扩建一座小而简陋的教堂,并专门发布公告称,教堂要与“佛罗伦萨的众多市民的意志结合而成的高贵的心灵相一致”。这反映当时佛罗伦萨()。
某路由器收到了一个IP数据报,在对其首部进行校验后发现该数据报存在错误,路由器最有可能采取的动作是()。
在考生文件夹下jtv文件夹中建立一个新文件夹Kunt。
最新回复
(
0
)