首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(2002年试题,九)已知4阶方阵A=(α1,α2,α3,α4),α1,α2,α3,α4均为4维列向量,其中α2,α3,α4线性无关,α1=2α2一α3.如果β=α1+α2+α3+α4,求线性方程组Ax=β的通解
(2002年试题,九)已知4阶方阵A=(α1,α2,α3,α4),α1,α2,α3,α4均为4维列向量,其中α2,α3,α4线性无关,α1=2α2一α3.如果β=α1+α2+α3+α4,求线性方程组Ax=β的通解
admin
2013-12-27
83
问题
(2002年试题,九)已知4阶方阵A=(α
1
,α
2
,α
3
,α
4
),α
1
,α
2
,α
3
,α
4
均为4维列向量,其中α
2
,α
3
,α
4
线性无关,α
1
=2α
2
一α
3
.如果β=α
1
+α
2
+α
3
+α
4
,求线性方程组Ax=β的通解
选项
答案
根据题设α
2
,α
3
,α
4
线性无关且α
1
=2α
2
一α
3
,因此rA=3,同时β=α
1
+α
2
+α
3
+α
4
,则方程组Ax=β的增广矩阵B=(α
1
,α
2
,α
3
,α
4
,β)的秩也为3,即rB=3,因此方程组Ax=β有解,由4一rA=1,知Ax=β有无穷多解,且Ax=0的解空间维数等于1,即基础解系中只含一个解向量,又由已知α
1
=2α
2
一α
3
,即α
1
一2α
2
+α
3
=0,可推出[*]从而[*]是Ax=0的一个解向量,因此[*]是Ax=0的基础解系.同时由β=α
1
+α
2
+α
3
+α
4
,可推出[*]是Ax=β的一个特解,从而方程组Ax=β通解为[*]其中C为任意常数. 解析二令[*]则由β=Ax=(α
1
,α
2
,α
3
,α
4
)[*]得,x
1
α
1
+x
2
α
2
+x
3
α
3
+x
4
α
4
=α
1
+α
2
+α
3
+α
4
将α
1
=2α
2
一α
3
代λ上式得,(2x
1
+x
2
—3)α
2
+(一x
1
+x
3
)α+(x
4
—1)α
4
=0因α
2
,α
3
,α
4
线性无关,故而有 [*] 解上述方程组得 [*] 其中k为任意常数.
解析
转载请注明原文地址:https://kaotiyun.com/show/pC54777K
0
考研数学一
相关试题推荐
设y=f(x)是满足微分方程y“-y‘-esinx=0的解,且f’(x0)=0,则f(x)在()
设有线性方程组,问λ为何值时①有唯一解、②无解、③有无限多解?并在有无限多解时求其通解.
设3阶实对称矩阵A的各行元素之和均为3,向量α1=(-1,2,-1)T,α2=(0,-1,1)T是线性方程组Ax=0的两个解.求正交矩阵Q和对角矩阵A,使得QTAQ=Λ;
设f(x),g(x)在点x=0的某邻域内连续,且当x→0时f(x)与g(x)为等价无穷小量,则当x→0时的()
级数的收敛区间为________.
设随机变量X和Y都服从标准正态分布,则
某湖泊水量为V,每年排入湖泊中内含污染物A的污水量为V/6,流入湖泊内不含A的水量为V/6,流出湖的水量为V/3.设2010年底湖中A的含量为5m0,超过国家规定指标,为了治理污染,从2011年初开始,限定排入湖中含A污水的浓度不超过可m0/V,问至多经过
(2004年试题,三)计算曲面积分其中∑是曲面z=1一x2一y2(z≥0)的上侧.
(2003年试题,八)设函数f(x)连续且恒大于零,其中Ω(t)={(x,y,z)|x2+y2+z2≤t2},D(t)={(x,y)|x2+y2≤t2}.证明当t>0时,.
随机试题
关于壁式框架,下列说法不正确的是
下列关于肘关节的叙述,正确的是()
下列关于费用效益分析的内容、具体步骤等方面的叙述,表达不正确的有()。
【背景资料】某公司在某省某城市承包了一个油库改造项目。项目包括新增5个2600m3储油罐,对原有部分输油管道进行改造。整个改造工程4月1日开工,工期120天。中间只允许罐区日常工作停工5天,从而完成管线的连接。新建储油罐与原轻质储油罐的最近距离8m;储
契税是()。
下列各项中,属于不得收购上市公司股份的情形是()。
以下()属于影响人际吸引的主要因素。
认知治疗中使用行为技术是为了()。
为了开展扶贫工作。政府免费发果树苗给群众。种植一段时间之后。群众反映树苗的成活率极低。树苗存在严重的质量问题。经检验。群众反映的问题属实。这件事由你负责。请问你怎么办?
Thoughnotbiologicallyrelated,friendsareas"related"asfourthcousins,sharingabout1%ofgenes.Thatis【B1】______1astu
最新回复
(
0
)