首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设3阶实对称矩阵A的各行元素之和均为3,向量α1=(-1,2,-1)T,α2=(0,-1,1)T是线性方程组Ax=0的两个解. 求正交矩阵Q和对角矩阵A,使得QTAQ=Λ;
设3阶实对称矩阵A的各行元素之和均为3,向量α1=(-1,2,-1)T,α2=(0,-1,1)T是线性方程组Ax=0的两个解. 求正交矩阵Q和对角矩阵A,使得QTAQ=Λ;
admin
2021-02-25
55
问题
设3阶实对称矩阵A的各行元素之和均为3,向量α
1
=(-1,2,-1)
T
,α
2
=(0,-1,1)
T
是线性方程组Ax=0的两个解.
求正交矩阵Q和对角矩阵A,使得Q
T
AQ=Λ;
选项
答案
对α
1
,α
2
正交化,令b
1
=α
1
=(-1,2,-1)
T
, [*] 再分别将b
1
,b
2
,α
3
单位化,得 [*] 则Q为正交矩阵,且Q
T
AQ=∧.
解析
转载请注明原文地址:https://kaotiyun.com/show/tZ84777K
0
考研数学二
相关试题推荐
设f(x)在[a,b]上连续,在(a,b)内可导(0≤a<b≤).证明:存在ξ,η∈(a,b),使得
设A,B为三阶矩阵且A不可逆,又AB+2B=O且r(B)=2,则|A+4E|=().
若三阶方阵,试求秩(A).
下列矩阵中,正定矩阵是()
已知A,B为三阶矩阵,且秩(B)=2,秩(AB)=1.试求AX=0的通解.
已知A是三阶矩阵,a1,a2,a3是线性无关的三维列向量,满足(Ⅰ)求矩阵A的特征值;(Ⅱ)求矩阵A的特征向量;(Ⅲ)求矩阵A*一6E的秩.
[2002年]已知A,B为三阶矩阵,且满足2A-1B=B一4E,其中E是三阶单位矩阵.(1)证明矩阵A一2E可逆;(2)若B=,求矩阵A.
设二次型f(x1,x2,x3)=ax12+ax22+(a一1)x32+2x1x3一2x2x3.(Ⅰ)求二次型f的矩阵的所有特征值;(Ⅱ)若二次型f的规范形为y12+y22,求a的值.
随机试题
A.单行B.相须C.相畏D.相恶E.相反表示增毒的配伍关系是
下述对于胰岛细胞分泌激素的描述,哪一项是恰当的
3岁女孩,反复咳嗽2个月。查体:体温正常,浅表淋巴结(-),咽(-),两肺布满哮呜音,无水泡音,反复抗生素治疗不愈,以往无呛咳病史,有过敏性鼻炎。首选的检查是
非周期连续信号的幅度频谱具有()。
生长期农作物保险期限的开始一般定为( )。
为资金盈余方及需求方提供服务、促使资金供求双方实现资金融通的机构称为()。
下列关于各种镜子的使用中,说法正确的是()。
“一带一路”高峰论坛峰会结束后,形成了高峰论坛成果清单。该清单主要涵盖了5大类,共76大项、270多项具体成果。下列不属于清单的5大类成果的是()。
假设表“学生.dbf”已在某个工作区打开,且取别名为student。选择“学生”表所在工作区为当前工作区的命令是
Inamomentofpersonalcrisis,howmuchhelpcanyouexpectfromaNewYorktaxidriver?Ibeganstudyingthisquestionandfou
最新回复
(
0
)