首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设3阶实对称矩阵A的各行元素之和均为3,向量α1=(-1,2,-1)T,α2=(0,-1,1)T是线性方程组Ax=0的两个解. 求正交矩阵Q和对角矩阵A,使得QTAQ=Λ;
设3阶实对称矩阵A的各行元素之和均为3,向量α1=(-1,2,-1)T,α2=(0,-1,1)T是线性方程组Ax=0的两个解. 求正交矩阵Q和对角矩阵A,使得QTAQ=Λ;
admin
2021-02-25
99
问题
设3阶实对称矩阵A的各行元素之和均为3,向量α
1
=(-1,2,-1)
T
,α
2
=(0,-1,1)
T
是线性方程组Ax=0的两个解.
求正交矩阵Q和对角矩阵A,使得Q
T
AQ=Λ;
选项
答案
对α
1
,α
2
正交化,令b
1
=α
1
=(-1,2,-1)
T
, [*] 再分别将b
1
,b
2
,α
3
单位化,得 [*] 则Q为正交矩阵,且Q
T
AQ=∧.
解析
转载请注明原文地址:https://kaotiyun.com/show/tZ84777K
0
考研数学二
相关试题推荐
设函数f(u)可导,y=f(x2)当自变量x在x=-1处取得增量△x=-0.1时,相应的函数增量△y的线性主部为0.1,则f’(1)=()
设A,B是n阶可逆矩阵,且A~B,则①A-1~B-1;②AT~BT;③A*~B*;④AB~BA.其中正确的个数是()
已知A,B为三阶矩阵,且秩(B)=2,秩(AB)=1.试求AX=0的通解.
设4阶矩阵A=(α1,α2,α3,α4),方程组Ax=β的通解为(1,2,2,1)T+c(1,一2,4,0)T,c任意.记B=(α3,α2,α1,β一α4).求方程组Bx=α1一α2的通解
设y″的系数为1的某二阶常系数非齐次线性微分方程的两个特解为y1*=(1-x+x2)ex与y1*=x2ex则该微分方程为______.
已知四维列向量α1,α2,α3线性无关,若向量βi(i=1,2,3,4)是非零向量且与向α1,α2,α3均正交,则向量组β1,β2,β3,β4的秩为().
设A是n阶矩阵,证明:(Ⅰ)r(A)=1的充分必要条件是存在n维非零列向量α,β,使得A=αβT;(Ⅱ)r(A)=1且tr(A)≠0,证明A可相似对角化.
[2002年]已知A,B为三阶矩阵,且满足2A-1B=B一4E,其中E是三阶单位矩阵.(1)证明矩阵A一2E可逆;(2)若B=,求矩阵A.
设二次型f(x1,x2,x3)=ax12+ax22+(a一1)x32+2x1x3一2x2x3.(Ⅰ)求二次型f的矩阵的所有特征值;(Ⅱ)若二次型f的规范形为y12+y22,求a的值.
随机试题
对于一审判三年以下徒刑,二审宣告缓刑的案件,应当
既往有胆道蛔虫病史。昨日胁肋剧痛,连及肩背,恶心呕吐,纳食减退,脉弦。最佳治疗方剂是:
下腹手术备皮范围哪项不正确
采用超前地质钻探进行隧道地质预报,当需要连续钻探时,前后两循环钻孔应重叠3~5m。()
下列()地下室防水做法应设置抗压层。
理财目标的内容包含的三个层面是()。(2008年上半年)
下列哪些属于民事主体?()
选择和运用教学方法的主要依据是什么?
______therain,theairqualitywouldnotbesogood.
由于常对象不能被更新,因此()。
最新回复
(
0
)