首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知4维列向量α1,α2,α3线性无关,若βi(i=1,2,3,4)非零且与α1,α2,α3均正交,则秩r(β1,β2,β3,β4)=
已知4维列向量α1,α2,α3线性无关,若βi(i=1,2,3,4)非零且与α1,α2,α3均正交,则秩r(β1,β2,β3,β4)=
admin
2015-05-07
63
问题
已知4维列向量α
1
,α
2
,α
3
线性无关,若β
i
(i=1,2,3,4)非零且与α
1
,α
2
,α
3
均正交,则秩r(β
1
,β
2
,β
3
,β
4
)=
选项
A、1
B、2
C、3
D、4
答案
A
解析
设α
1
=(a
11
,a
12
,a
13
,a
14
)
T
, α
2
=(a
21
,a
22
,a
23
,a
24
)
T
, α
3
=(a
31
,a
32
,a
33
,a
34
)
T
,
那么β
i
与α
1
,α
2
,α
3
均正交,即内积
=0(j=1,2,3,4).
亦即β
j
(j=1,2,3,4)是齐次方程组
的非零解
由于α
1
,α
2
,α
3
线性无关,故系数矩阵的秩为3.所以基础解系有4-3=1个解向量.从而r(β
1
,β
2
,β
3
,β
4
)=1.故应选(A).
转载请注明原文地址:https://kaotiyun.com/show/pY54777K
0
考研数学一
相关试题推荐
设A为3阶实对称矩阵,其特征值为λ1=0,λ2=λ3=1,α2,α3是A的两个不同的特征向量,且A(α1+α2)=α2.证明Aα1=0;
若f(x1,x2,x3)=2x12+x22+x32+2x1x2-tx2x3是正定二次型,则t的取值范围是________.
A、240B、480C、-240D、-480D这是4阶行列式的计算题,如果将第三行提出公因子2,该行列式实际上是由数字3,-1,2,-2升幂排列构造的范德蒙德行列式,可利用公式直接定值,即=2×(-2-3)×(-2+1)×(-2-2)×(2-3)×
已知,α1是矩阵A属于特征值λ=2的特征向量,α2,α3是矩阵A属于特征值λ=6的线性无关的特征向量,那么矩阵P不能是().
设为实矩阵,在下列条件中:①|A|<0;②b=c;③a=d;④r(A)=1.能确定A可相似对角化的是().
微分方程3extanydx+(1一ex)sec2ydy=0的通解是______.
曲线y=(x2+1)/(2x2-x+3)arctanx的水平渐近线为________.
确定常数a,b,c的值,使得当x→0时,ex(1+bx+cx2)=1+ax+o(x3).
设齐次线性方程组,其中ab≠0,n≥2,讨论a,b取何值时,方程组只有零解,有无穷多个解?在有无穷多个解时求出其通解。
设X1,X2,X3,X4是来自正态总体N(0,22)的简单随机样本,X=a(X1-2X2)2+b(3X3-4X4)2,则当a=__________,b=____________时,统计量X服从X2分布,其自由度为_____________.
随机试题
下面描述哪些是正确的:
A.核内病毒包涵体B.胞浆内病毒包涵体C.两者皆有D.两者皆无(1994年)麻疹病毒
女性,80岁。慢性咳嗽、咳痰20余年,冬季加重。近5年活动后气促。1周前感冒后痰多,气促加剧。近2天嗜睡。血白细胞18.6×109/L,中性0.90,动脉血气:pH7.29,PaCO280mmHg,PaO247mmHg,BE一3.5mmol/L。经
以下哪一种方法是目前诊断胃食管反流最可靠的方法
A.低钾血症B.低钙血症C.低血糖症D.低氯血症E.低镁血症久泻佝偻病的患儿脱水、酸中毒纠正后出现惊厥,多考虑为
药学监护是一种严谨、认真、负责的药学工作态度。()
张某于2000年1月1日以50万元购得一套住宅,购房款中的60%来自银行提供的年利率为6%、期限为15年、按月等额偿还的个人住房抵押贷款。现张某拟于2005年1月1日将此套住宅连同与之相关的抵押债务转让给李某。根据李某的要求,银行为其重新安排了还款方案:
特大质量事故的处理方案,由项目法人委托()提出。
在账务处理系统进行科目设置时,辅助核算设置可以放在任何一级科目上。()
•Readthetextbelowaboutsupplier.•Inmostofthelines41-52,thereisoneextraword.Itiseithergrammaticallyincorrec
最新回复
(
0
)