首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设二次型f(x1,x2,x3)=2(a1x1+a2x2+a3x3)2+(b1x1+b2x2+b3x3)2,记 证明二次型f对应的矩阵为2ααT+ββT.
设二次型f(x1,x2,x3)=2(a1x1+a2x2+a3x3)2+(b1x1+b2x2+b3x3)2,记 证明二次型f对应的矩阵为2ααT+ββT.
admin
2018-08-03
62
问题
设二次型f(x
1
,x
2
,x
3
)=2(a
1
x
1
+a
2
x
2
+a
3
x
3
)
2
+(b
1
x
1
+b
2
x
2
+b
3
x
3
)
2
,记
证明二次型f对应的矩阵为2αα
T
+ββ
T
.
选项
答案
记x=[*],由于 f(x
1
,x
2
,x
3
)=2(a
1
x
1
+a
2
x
2
+a
3
x
3
)
2
+(b
1
x
1
+b
2
x
2
+b
3
x
3
)
2
=2[(x
1
,x
2
,x
3
)[*](a
1
,a
2
,a
3
)[*]]+[(x
1
,x
2
,x
3
)[*](b
1
,b
2
,b
3
)[*]] =2x
T
(αα
T
)x+x
T
(ββ
T
)x =x(2αα
T
+ββ
T
)x
T
, 又2αα
T
+ββ
T
为对称矩阵,所以二次型f的矩阵为2αα
T
+ββ
T
.
解析
转载请注明原文地址:https://kaotiyun.com/show/pug4777K
0
考研数学一
相关试题推荐
设函数f(x,y)在D:x2+y2≤1有连续的偏导数,且在L:x2+y2=1上有f(x,y)≡0.证明:f(0,0)=,其中Dr:r2≤x2+y2≤1.
设总体X,Y相互独立且都服从N(μ,σ2)分布,(X1,X2,…,Xm)与(Y1,Y2,…,Yn)分别为来自总体X,Y的简单随机样本.证明:S2=为参数σ2的无偏估计量.
设f(x)在[a,b]上连续,任取xi∈[a,b](i=1,2,…,n),任取ki>0(i=1,2,…,n),证明:存在ξ∈[a,b],使得k1f(x1)+k2f(x2)+…+knf(xn)=(k1+k2+…+kn)f(ξ).
假设随机事件A与B相互独立,P(A)=P=a一1,P(A∪B)=,求a的值.
已知随机变量X服从参数为1的指数分布,Y服从标准正态分布,X与Y独立.现对X进行n次独立重复观察,用Z表示观察值大于2的次数,求T=Y+Z的分布函数FT(t).
已知x1,x2,…,x10是取自正态总体N(μ,1)的10个观测值,统计假设为H0:μ=μ0=0;H1:μ≠0.(Ⅰ)如果检验的显著性水平α=0.05,且拒绝域R={||≥k},求k的值;(Ⅱ)若已知=1,是否可以据此样本推断μ=0(α=0.05)?
二次型f(x1,x2,x3)=5一2x1x2—6x2x3+6x1x3的秩为2,求c及此二次型的规范形,并写出相应的坐标变换.
已知二次型f(x1,x2,x3)=(1一a)+2(1+a)x1x2的秩为2.(Ⅰ)求a的值;(Ⅱ)求正交变换x=Qy,把f(x1,x2,x3)化成标准形;(Ⅲ)求方程f(x1,x2,x3)=0的解.
设A=(aij)是秩为n的n阶实对称矩阵,Aij是|A|中元素aij的代数余子式(i,j=1,2,…,n),二次型f(x1,x2,…,xn)=xjxj.(Ⅰ)记X=(x1,x2,…,xn)T,试写出二次型f(x1,x2,…,xn)的矩阵形式;(Ⅱ)判断
随机试题
依法行政的核心与精髓在于法律规范的()
男性,35岁,平时体健,突发心悸不适,描记心电图提示RR间期绝对不等,QRs波群呈室上性图形,平均心室率110bpm,其心电图诊断
在进度计划实施的调整中,正确的是( )。
下列各项中,会计人员执业必须遵循的会计法规体系包括()。
李某供职于某报关行,2002年参加了报关员资格全国统一考试,未获通过,故又报名参加2003年的报关员资格全国统一考试并通过了报名确认。李某于2003年8月即开始借用该单位其他报关员的名义向海关报关。根据海关现行规定,对李某的这一行为,海关可以()。
甲公司只生产一种乙产品,2017年10月初在产品数量为0,10月份共投入原材料74680元,直接人工和制造费用共计23400元。乙产品需要经过两道加工工序,工时定额为20小时,其中第一道工序12小时,第二道工序8小时,原材料在产品生产时陆续投入。月末乙产品
所有者权益金额是取决于资产和负债计量的结果,其金额等于资产减负债后的余额()
(2017·山东)教学要着眼于促进学生的一般发展,注意做到认知因素与非认知因素、意识与潜意识、科学性与艺术性统一。这反映了学生发展的()
简述商业银行的经营原则及其关系。[山东大学2016金融硕士;中国科学技术大学2016金融硕士;广东财经大学2016金融硕士;深圳大学2012金融硕士]
EveryyearBerryBros&Rudd,Britain’soldestwinemerchant,issuesapocket-sizedpricelist.Readingoldcopiesmakesamateur
最新回复
(
0
)