首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在[0,1]上连续,且f(x)<1,证明:2x—∫0xf(t)dt=1在(0,1)内有且仅有一个实根.
设f(x)在[0,1]上连续,且f(x)<1,证明:2x—∫0xf(t)dt=1在(0,1)内有且仅有一个实根.
admin
2020-03-16
34
问题
设f(x)在[0,1]上连续,且f(x)<1,证明:2x—∫
0
x
f(t)dt=1在(0,1)内有且仅有一个实根.
选项
答案
令φ(x)=2x—∫
0
x
f(t)dt一1, φ(0)=一1,φ(1)=1一∫
0
1
f(t)dt, 由f(x)<1得∫
0
1
f(t)dt<1,从而φ(1)=1-∫
0
1
f(t)dt>0, 由零点定理,存在c∈(0,1),使得φ(C)=0,即方程2x一∫
0
x
f(t)dt=1至少有一个实根. 因为φ’(x)=2一f(x)>0,所以φ(x)在[0,1]上严格递增,故2x-∫
0
x
f(t)dt=1在(0,1) 内有且仅有一个实根.
解析
转载请注明原文地址:https://kaotiyun.com/show/q7A4777K
0
考研数学二
相关试题推荐
[2014年]设函数f(x),g(x)在区间[a,b]上连续,且f(x)单调增加,0≤g(x)≤1.证明:0≤∫axg(t)dt≤x一a,x∈[a,b];
[2003年]有一平底容器,其内侧壁是由曲线x=φ(y)(y≥0)绕y轴旋转而成的旋转曲面(见图1.3.5.10),容器的底面圆的半径为2m.根据设计要求,当以3m3/min的速率向容器内注入液体时,液面的面积将以πm2/min的速率均匀扩大(假设
(2003年试题,六)设函数y=y(x)在(一∞,+∞)内具有二阶导数,且y’≠0,x=x(y)是y=y(x)的反函数.(1)试将x=x(y)所满足的微分方程变换为y=y(x)满足的微分方程;(2)求变换后的微分方程满足初始条件y(0)=0,y’(0)=的
设有矩阵Am×n,Bn×m,Em+AB可逆,(1)验证:Em+BA也可逆,且(En+BA)一1=Em—B(Em+AB)一1A;(2)设
已知三阶矩阵A和三维向量x,使得x,Ax,A2x线性无关,且满足A3x=3Ax一2A2x。记p=(x,Ax,A2x)。求三阶矩阵B,使A=PBP-1;
求下列极限:
假设:①函数y=f(x)(0≤x≤+∞)满足条件f(0)=0和0≤f(x)≤ex一1;②平行于y轴的动直线MN与曲线y=f(x)和y=ex一1分别相交于点P1和P2;③曲线y=f(x),直线MN与x轴所围成的封闭图形的面积S恒等于线段P1P2的长度。
设二次型f(x1,x2,x3)=ax12+ax22+(a一1)x3+2x1x3—2x2x3。若二次型f的规范形为y12+y22,求a的值。
设二元函数计算二重积分,其中D={(x,y)||x|+|y|≤2}。[img][/img]
已知A为n(n≥3)阶非零实矩阵,Aij为A中元素aij的代数余子式,证明:aijAT=E,且|A|=1;
随机试题
焊炬出现放炮和回火该怎么办?
新民主主义革命的动力包括( )。
合成血红蛋白的基本原料是
子宫肌瘤与子宫肉瘤的主要不同点是
HIV主要感染的细胞是
某企业采用应收账款余额百分比法计提坏账准备。已知年末应收账款余额为50万元,核定的坏账计提比例为10%,且企业本年是初次计提坏账。不考虑其他因素,年末计提坏账的会计处理为()。
贯彻习近平总书记“办好一次会,搞活一座城”的指示精神,就是努力将青岛建设成为开放、现代、活力、时尚的国际大都市。()
在中国历史上曾经出现过文景之治、贞观之治、康乾之治等所谓盛世。盛世的出现是和法制的相对健全分不开的,法制是推动盛世出现的条件,又是盛世的外在标志。从来没有无法制的盛世,也从来没有盛世而法制衰微的现象。即使是入主中原的少数民族,在立定脚跟之后也急于立法,以适
设a=-(96×97)/(98×99),b=-(96×99)/(97×98),c=-(96×98)/(97×99),则三个数a、b、c之间的关系为()。
Thetime-enduringmetaphorofthewaroncancer,asoverusedasitmaybe,isasevocativeasevertodescribeoureffortstobe
最新回复
(
0
)