首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
证明:n维列向量组α1,α2,…,αn线性无关的充分必要条件是行列式
证明:n维列向量组α1,α2,…,αn线性无关的充分必要条件是行列式
admin
2018-07-31
69
问题
证明:n维列向量组α
1
,α
2
,…,α
n
线性无关的充分必要条件是行列式
选项
答案
令矩阵A=[α
1
α
2
… α
n
],则α
1
,α
2
,…,α
n
,线性无关→|A|≠0,而D=|A
T
A|=|A
T
||A|=|A|
2
,故|A|≠0→D≠0.
解析
转载请注明原文地址:https://kaotiyun.com/show/r5g4777K
0
考研数学一
相关试题推荐
设α1,α2,α3为四维列向量组,α1,α2线性无关,α3=3α1+2α2,A=(α1,α2,α3),求AX=0的一个基础解系.
设f(x)在[0,1]上连续,且0<m≤f(x)≤M,对任意的x∈[0,1],证明:
设S(x)=∫0x|cost|dt.(1)证明:当nπ≤x<(n+1)π时,2n≤S(x)<2(n+1);(2)求.
设A为n阶正定矩阵.证明:对任意的可逆矩阵P,PTAP为正定矩阵.
设A是三阶矩阵,α1,α2,α3为三个三维线性无关的列向量,且满足Aα1=α2+α3,Aα2=α1+α3,Aα3=α1+α2.(1)求矩阵A的特征值;(2)判断矩阵A可否对角化.
设二维非零向量α不是二阶方阵A的特征向量.(1)证明α,Aα线性无关;(2)若A2α+Aα一6α=0,求A的特征值,讨论A可否对角化;
设A=有四个线性无关的特征向量,求A的特征值与特征向量,并求A2010.
设A是n阶方阵,A+E可逆,且f(A)=(E—A)(E+A)-1.证明:(1)[E+f(A)](E+A)=2E;(2)f[f(A)]=A.
设A,B为同阶方阵。(Ⅰ)若A,B相似,证明A,B的特征多项式相等;(Ⅱ)举一个二阶方阵的例子说明(Ⅰ)的逆命题不成立;(Ⅲ)当A,B均为实对称矩阵时,证明(Ⅰ)的逆命题成立。
随机试题
Thecompetitionisopentobothprofessionalsand______.
女性,20岁。无痛性左颈部淋巴结肿大1个月。淋巴结活检示:找到R-S细胞。R-S细胞不会出现于下列哪种疾病
男性,42岁。发现肝硬化6年。4天前进餐时出现呕血,鲜红色,量约1200ml。患者出现头晕、心慌、出冷汗等。经输血、补液和应用止血药物治疗后病情好转,血压和心率恢复正常。1天前起出现睡眠障碍,并出现幻听和言语不清。化验检查示:血氨130μtg/d1,血糖5
适宜于二层或三层面层的下面层的沥青混凝土面层是()沥青混凝土。
采用“方上”、“宝城宝顶”、“以山为陵”封土形制的帝王陵墓依次是()。
在一次国际会议后,中国外交官愤慨地说:“偌大一省权利见夺于他国,这就是我们加入协约国参战的报酬吗?”这次会议是()。
(2010年上海.56)某商场在一楼和二楼间安装一自动扶梯,该扶梯以均匀的速度向上行驶。一男孩与一女孩同时从自动扶梯走到二楼(扶梯本身也在行驶),假设男孩与女孩都做匀速运动,且男孩每分钟走动的级数是女孩的两倍,已知男孩走了27级达到扶梯顶部,而女孩走了
SDH最基本的模块信号是STM-1,它的速率是155Mbit/s,STM-16的速率是________。
在教师信息输入窗体中,为职称字段提供“教授”、“副教授”、“讲师”等选项供用户直接选择,最合适的控件是()。
将下列主动句变为被动句,被动句变为主动句:Nostechniciensetouvriersontcon?uetfabriquécesmachines.
最新回复
(
0
)