首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设z=z(x,y)是由9x2-54xy+90y2-6yz-z2+18=0确定的函数,求z=z(x,y)的极值点和极值。
设z=z(x,y)是由9x2-54xy+90y2-6yz-z2+18=0确定的函数,求z=z(x,y)的极值点和极值。
admin
2018-11-16
36
问题
设z=z(x,y)是由9x
2
-54xy+90y
2
-6yz-z
2
+18=0确定的函数,求z=z(x,y)的极值点和极值。
选项
答案
利用一阶全微分形式不变性,将方程求全微分即得 18xdx-54(ydx+xdy)+180ydy-6zdy-6ydz-2zdz=0,即(18x+54y)dx+(180y-54x-6z)dy-(6y+2z)dz=0。 从而[*]为求隐函数z=z(x,y)的驻点,应解方程组 [*] ②可化简得x=3y,由③可得z=30y-9x=3y,代入①可解得两个驻点x=3,y=1,z=3与x=-3,y=-1,z=-3。 为判定z=z(x,y)在两个驻点处是否取得极值,还需求z=z(x,y)在这两点的二阶偏导数: [*] 记P=(3,1,3),Q=(-3,-1,-3),即可得出在P点处[*], 故[*],故在点(3,1)处z=z(x,y)取得极小值z(3,1)=3。 类似可知在Q点处[*], 故B2
-AC=[*],且[*],故在点(-3,-1)处z=z(x,y)取得极大值z(-3,-1)=-3。
解析
转载请注明原文地址:https://kaotiyun.com/show/r8W4777K
0
考研数学三
相关试题推荐
设的逆矩阵A一1的特征向量.求x,y,并求A一1对应的特征值μ.
设二维随机变量(X,Y)的联合密度为f(x,y)=求c;
设A为n阶矩阵,A11≠0.证明:非齐次线性方程组AX=b有无穷多个解的充分必要条件是A*b=0.
设X~N(μ,σ2),其分布函数为F(x),对任意实数a,讨论F(一a)+F(a)与1的大小关系.
设y=y(x)是一向上凸的连续曲线,其上任意一点(x,y)处的曲率为,又此曲线上的点(0,1)处的切线方程为y=x+1,求该曲线方程,并求函数y(x)的极值.
设曲线L1与L2皆过点(1,1),曲线L1在点(x,y)处纵坐标与横坐标之商的变化率为2,曲线L2在点(x,y)处纵坐标与横坐标之积的变化率为2,求两曲线所围成区域的面积.
已知方程组的一个基础解系为(b11,b12,…,b1.2n)T,(b21,b22,…,b2,2n)T,…,(bn1,bn2,…,bn,2n)T。试写出线性方程组的通解,并说明理由。
设函数f(x)在(一∞,+∞)上有定义,在区间[0,2]上,f(x)=x(x2—4),若对任意的x都满足f(x)=kf(x+2),其中k为常数。(Ⅰ)写出f(x)在[—2,0)上的表达式;(Ⅱ)问k为何值时,f(x)在x=0处可导。
设f(x)>0,f"(x)在(一∞,+∞)内连续,令φ(x)=(1)求φ’(x),并讨论φ’(x)的连续性.(2)证明φ(x)单调递增.
设X,Y相互独立且同服从[0,θ](θ>0)上的均匀分布,求E[min(X,Y)],E[max(X,Y)]。
随机试题
诊断脊柱骨折脱位时,应注意
Mostworthwhilecareersrequiresomekindofspecializedtraining.Ideally,therefore,thechoiceofan【C1】________shouldbemad
以下哪些不是网络型漏洞扫描器的功能
痰液静置后有分层现象的见于
一切防火措施都是为了防止燃烧的3个条件同时存在,所能采取的基本措施是()。
监管谈话是指监管人员为了解银行业金融机构的经营状况、风险状况和发展趋势而与其()进行谈话。
拥有专利申请权的自然人死亡的,其继承人拟继承该专利申请权的,应当自被继承人死亡之日起3个月内向专利行政部门提出申请。()
心理咨询中,运用参与性技术的目的之一是()。(2010年11月真题)
建筑结构中,屋架是常用的结构形式,它一般运用于较大跨度的建筑中,其受力特点为节点荷载,所有杆件只受()。
以下不属于数据输入输出风格的是(49)。
最新回复
(
0
)