首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A是n(n>1)阶矩阵,ξ1,ξ2,…,ξn是n维列向量,若ξN≠0,且Aξ1=ξ2,Aξ2=ξ3,…,Aξn-1=ξn,Aξn=0,证明: (1)ξ1,ξ2,…,ξn线性无关. (2)A不能相似于对角矩阵.
设A是n(n>1)阶矩阵,ξ1,ξ2,…,ξn是n维列向量,若ξN≠0,且Aξ1=ξ2,Aξ2=ξ3,…,Aξn-1=ξn,Aξn=0,证明: (1)ξ1,ξ2,…,ξn线性无关. (2)A不能相似于对角矩阵.
admin
2020-09-25
82
问题
设A是n(n>1)阶矩阵,ξ
1
,ξ
2
,…,ξ
n
是n维列向量,若ξ
N
≠0,且Aξ
1
=ξ
2
,Aξ
2
=ξ
3
,…,Aξ
n-1
=ξ
n
,Aξ
n
=0,证明:
(1)ξ
1
,ξ
2
,…,ξ
n
线性无关.
(2)A不能相似于对角矩阵.
选项
答案
(1)由题意A
k
ξ
1
=Aξ
k
=ξ
k+1
(k=1,2,…,n一1),A
n
ξ
1
=A
n-1
ξ
2
=…=Aξ
n
=0. 设有一组数x
1
,x
2
,…,x
n
使x
1
ξ
1
+x
2
ξ
2
+…+x
n
ξ
n
=0. 以A
n-1
左乘上式两边得x
1
ξ
n
=0,由于ξ
n
≠0,故x
1
=0,类似的可得x
2
=x
3
=…=x
n
=0,因此ξ
1
,ξ
2
,…,ξ
n
线性无关. (2)由题意得 A(ξ
1
,ξ
2
,…,ξ
n
)=(ξ
2
,ξ
3
,…,ξ
n
,0)=(ξ
1
,ξ
2
,…,ξ
n
)[*] 因ξ
1
,ξ
2
,…,ξ
n
线性无关,因此A与矩阵B=[*]相似,因R(B)=n一1,因此R(A)=n一1,因B的特征值全为0,因此A的特征值全为0,因此A的线性无关特征向量只有1个,因此A不可对角化.
解析
转载请注明原文地址:https://kaotiyun.com/show/rWx4777K
0
考研数学三
相关试题推荐
如果β=(1,2,t)T可以由α1=(2,l,1)T,α2=(—1,2,7)T,α3=(1,—1,—4)T线性表示,则t的值是________。
设A,B都是三阶矩阵,A=且满足(A*)-1B=ABA+2A2,则B=______.
已知方程组无解,则a=________.
已知矩阵A=只有一个线性无关的特征向量,那么A的三个特征值是________。
设A=,B是3阶非零矩阵,且AB=O,则a=________
设有两条抛物线y=nx2+1/n和y=(n+1)x2+1/(n+1).记它们交点的横坐标的绝对值为an.求级数的和.
设向量α1,α2,…,αt是齐次线性方程组.AX=0的一个基础解系,向量β不是AX=0的解,即Aβ≠0.试证明:向量组β,β+α1,β+α2,…,β+αt线性无关.
设A为n阶非奇异矩阵,α为n维列向量,b为常数,记分块矩阵其中A*是矩阵A的伴随矩阵,E为n阶单位矩阵.计算并化简PQ;
设α1,α2,α3均为三维列向量,记矩阵A=[α1,α2,α3],B=[α1+α2+α3,α1+2α1+4α3,α1+3α2+9α3]如果|A|=1,那么|B|=__________.
随机试题
A、OnSaturday.B、OnFridaynight.C、Aftermidnight.D、Inthedaytime.B新闻中提到,本次袭击开始于周五晚上,在夜色的掩护下,一直持续了很长时间。
“一国两制”的核心是()
女性,22岁。无诱因突发右下腹部剧烈疼痛,向腰骶及会阴部放射,伴头晕、恶心、出大汗、欲排大便感,未作任何处理来院急诊。(2014年第92题)该患者体检中不可能出现的体征是
哮证缓解期治疗要点是治哮证发作期治疗要点是治
某新建项目建设期为3年,借款额在各年年内均衡发生,第l年借款200万元,第2年借款400万元,第3年借款200万元,年利率6%,则该项目建设期按复利计算的借款利息为()万元。
根据成就动机理论,力求成功者最可能选择的成功概率是__________。
这座由668把算盘组成的大型木制“丹枫阁”藏书楼气势宏伟,格外引人注目。________的构思,精美的制作,创造了全国之最,让参观者啧啧称赞,________。填入划横线部分最恰当的一项是:
PM2.5是指大气中直径小于或等于2.5微米的颗粒物,它的直径还不到人的头发丝粗细的1/20。虽然PM2.5只是地球大气成分中含量很少的成分,但它富含大量的有毒、有害物质且在大气中的停留时间长、输送距离远,因而对人体健康和大气环境质量的影响更大。根据以上内
【《纳伊条约》】武汉大学2003年世界史真题
ToothersandthemselvestheBritishhaveareputationforbeingconservative--notinthenarrowpoliticalsense,butinthesen
最新回复
(
0
)