首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设α=(a1,2,…,an)T是Rn中的非零向量,方阵A=ααT.(1)证明:对正整数m.存在常数t.使Am=tm-1A,并求出t;(2)求一个可逆矩阵P,使P-1AP=A为对角矩阵.
设α=(a1,2,…,an)T是Rn中的非零向量,方阵A=ααT.(1)证明:对正整数m.存在常数t.使Am=tm-1A,并求出t;(2)求一个可逆矩阵P,使P-1AP=A为对角矩阵.
admin
2019-02-23
52
问题
设α=(a
1
,
2
,…,a
n
)
T
是R
n
中的非零向量,方阵A=αα
T
.(1)证明:对正整数m.存在常数t.使A
m
=t
m-1
A,并求出t;(2)求一个可逆矩阵P,使P
-1
AP=A为对角矩阵.
选项
答案
(1)A
m
=(αα
T
)(αα
T
)…(αα
T
)=α(α
T
α)
m-1
α
T
=(α
T
α)
m-1
(αα
T
)=([*]a
i
2
)
m-1
A=t
m-1
A,其中t=[*]a
i
2
.(2)A≠O,[*]≤秩(A)=秩(αα
T
)≤秩(α)=1,[*]秩(A)=1,因实对称矩阵A的非零特征值的个数等于它的秩,故A只有一个非零特征值,而有n-1重特征值λ
1
=λ
2
=…=λ
n-1
=0.设a
1
≠0,由0E-A→A=[*],得属于特征值0的特征值可取为:ξ
1
=[*].由特征值之和等于A的主对角线元素之和,即0+0+…+0+λ
n
=[*]a
1
2
,得λ
n
=[*]a
i
2
=α
T
α,由Aα=(αα
T
)α=α(α
T
α)=αλ
n
=λ
n
α及α≠0,得与λ
n
对应特征向量为α,令P=[ξ
1
,ξ
2
,…,ξ
n-1
,α],则有P
-1
AP=diag(0,0,…,0,[*]a
i
2
)为对角阵.
解析
转载请注明原文地址:https://kaotiyun.com/show/raj4777K
0
考研数学二
相关试题推荐
设f(x)=sinx,f[φ(x)]=1-x2,则φ(x)=_____,定义域为______
f(x)在(-∞,+∞)内二阶可导,f’’(x)<0,,则f(x)在(-∞,0)内().
证明
设函数f(χ)在(-∞,+∞)内满足f(χ)=f(χ-π)+sinχ,且f(χ)=χ,χ∈[0,π),求∫π3πf(χ)dχ.
设D由抛物线y=χ2,y=4χ2及直线y=1所围成.用先χ后y的顺序,将I=f(χ,y)dχdy,化成累次积分.
设A是一个n阶实矩阵,使得AT+A正定,证明A可逆.
设y=y(χ)在[0,+∞)内可导,且在χ>0处的增量△y=y(χ+△χ)-y(χ)满足△y(1+△y)=+α,其中当△χ→0时α是△χ的等价无穷小,又y(0)=2,求y(χ).
求下列变限积分函数的导数:(Ⅰ)F(χ)=etdt,求F′(χ)(χ≥0);(Ⅱ)设f(χ)处处连续,又f′(0)存在,F(χ)=∫1χ[∫0tf(u)du]dt,求F〞(χ)(-∞<χ<-∞).
已知平面上三条直线的方程为l1=aχ+2by+3c=0,l2=bχ+2cy+3a=0,l3=cχ+2ay+3b=0.试证这三条直线交于一点的充分必要条件为a+b+c=0.
设n>1,n元齐次方程组AX=0的系数矩阵为A=(1)讨论a为什么数时AX=0有非零解?(2)在有非零解时求通解.
随机试题
良好的曲轴箱通风装置在发动机正常工作时,曲轴箱内应()。
抗日民主政权的行政监督主要有()
A.二妙散B.八正散C.疏凿饮予D.程氏萆薢分清饮E.薏苡仁汤治疗尿浊,应首选
100℃以上高温环境,宜采用()。
图2-14为万能外圆磨床工作台往复运动液压传动原理图,试述它是如何实现工作台向右移动的。
下列不属于理财顾问服务提供的专业化服务的是()。
甲公司得知乙公司正在与丙公司谈判。甲公司本来并不需要这个合同,但为排挤乙公司,就向丙公司提出了更好的条件。乙公司退出后,甲公司也借故中止谈判,给丙公司造成了损失。根据现行的宪法及法律知,甲公司的行为属于()。
阅读下文,并回答以下问题:一个国际科学家小组携带数吨硫酸铁粉末起航前往南极,以研究能否以硫酸铁为“肥料”促进南极海域海藻等微生物的生长来减缓全球变暖的速度。该小组的9名研究人员来自东吉利大学和普利茅斯海洋实验室。预计科学家们将于2月开始
数据结构主要研究的是数据的逻辑结构、数据的运算和()。
Whendidsportbegin?Ifsportis,inessence,play,theclaimmightbemadethatsportismucholderthanhumankind,for,aswe
最新回复
(
0
)