首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设n阶矩阵A与B相似,E为n阶单位矩阵,则( )
设n阶矩阵A与B相似,E为n阶单位矩阵,则( )
admin
2018-12-29
30
问题
设n阶矩阵A与B相似,E为n阶单位矩阵,则( )
选项
A、λE—A=λE—B。
B、A与B有相同的特征值和特征向量。
C、A和B都相似于一个对角矩阵。
D、对任意常数t,tE—A与tE—B相似。
答案
D
解析
因为由A与B相似不能推得A=B,所以A选项不正确。
相似矩阵具有相同的特征多项式,从而有相同的特征值,但不一定具有相同的特征向量,故B选项也不正确。
对于选项C,因为根据题设不能推知A,B是否相似于对角阵,故C选项也不正确。
综上可知D选项正确。事实上,因A与B相似,故存在可逆矩阵P,使P
—1
AP=B,于是
P
—1
(tE—A)P=tE—P
—1
AP=tE—B,
可见对任意常数t,矩阵tE—A与tE—B相似,故选D。
转载请注明原文地址:https://kaotiyun.com/show/rxM4777K
0
考研数学一
相关试题推荐
设f(x)在[-a,a]上具有三阶连续导数,且满足f’(x)=x2+∫0xtf(x-t)dt,f(x)=0,证明:存在一点ξ∈[-a,a],使得a4|f’’’(ξ)|=12∫-aa|f(x)|dx.
设是矩阵A-1属于特征值λ0的特征向量,若|A|=-2,求a,b,c及λ0的值.
设n阶方阵A≠0,满足Am=0(其中m为某正整数).证明:A不相似于对角矩阵.
设n阶方阵A≠0,满足Am=0(其中m为某正整数).求A的特征值.
已知n阶矩阵A=[aij]n×n有n个特征值分别为λ1,λ2,…,λn,证明:
设η*是非齐次方程组AX=b的一个特解,ξ1,ξ2,…,ξn-r是对应齐次方程组AX=0的基础解系.令η0=η*,η1=ξ1+η*,η2=ξ2+η*,…,ηn-r=ξn-r+η*.证明:非齐次方程的任一解η都可表示成η=μ0η0+μ1η1+μ2η2+…+μ
设A是3×3矩阵,α1,α2,α3是三维列向量,且线性无关,已知Aα1=α2+α3,Aα2=α1+α3,Aα3=α1+α2.求|A|.
设a0,a1,…,an-1是n个实数,方阵若λ是A的特征值,证明:ξ=[1,λ,λ2,…,λn-1]T是A的对应于特征值λ的特征向量.
设3×3阶矩阵A=[α,β1,β2],B=[β,β,β],其中α,β,β1,β2均为3维列向量,已知行列式|A|=2,则行列式|[α―β,2β1-β2,β1-2β2]|=______.
随机试题
()是断定几种事物情况同时存在的判断。
一台主机或路由器同因特网有多个接口,为保证唯一性,其只能拥有一个IP地址。()
A、Therewerenoplanetswithoutmoons.B、TherewasnoairorwateronJupiter.C、Lifewasnotpossibleinouterspace.D、Themys
预防手术后尿潴留,下列错误的是【】
区别轻、重型婴儿腹泻的主要指标是
治疗闭角型青光眼应选择
合并企业的成本与收益等于社会的成本与收益,不存在外部效应。()
A、 B、 C、 D、 A分子2,5,8,11,(14)是公差为3的等差数列,分母3,7,11,15,(19)是公差为4的等差数列。
我国社会主义法律体系可以分为()。
Inotifiedhimthatmyaddresshadchanged.
最新回复
(
0
)