首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知随机变量X与Y相互独立且都服从参数为的0一1分布,即P{X=0}=P{X=1}=,P{Y=0}=P{Y=1}=,定义随机变量Z=求Z的分布;(X,Z)的联合分布;并问X与Z是否独立。
已知随机变量X与Y相互独立且都服从参数为的0一1分布,即P{X=0}=P{X=1}=,P{Y=0}=P{Y=1}=,定义随机变量Z=求Z的分布;(X,Z)的联合分布;并问X与Z是否独立。
admin
2018-01-12
27
问题
已知随机变量X与Y相互独立且都服从参数为
的0一1分布,即P{X=0}=P{X=1}=
,P{Y=0}=P{Y=1}=
,定义随机变量Z=
求Z的分布;(X,Z)的联合分布;并问X与Z是否独立。
选项
答案
由于(X,Y)是二维离散随机变量,故由边缘分布及相互独立可求得联合分布;应用解题一般模式,即可求得Z及(X,Z)的分布,进而判断X、Z是否独立。 由题设知 [*] 将其改写成矩阵形式,求Z、(X,Z)的分布: [*] 由此可得Z服从参数P=[*]的0—1分布;所以(X,Z)的联合概率分布为 [*] 因P{X=i,Z=j}=[*]=P{X=i}P{Z=j}(i,j=0,1),故X与Z独立。
解析
转载请注明原文地址:https://kaotiyun.com/show/s3X4777K
0
考研数学三
相关试题推荐
设总体X~N(μ,σ2),X1,…,Xn为取自X的简单样本,记求E(D),D(D)。
设X1,X2,…,Xn是来自总体N(μ2,σ2)(σ>0)的简单随机样本。记统计量T=,则ET=________。
设X1,X2,X3为来自正态总体N(0,σ2)的简单随机样本,则统计量服从的分布为
设随机变量(X,Y)在圆域x2+y2≤r2上服从联合均匀分布。(1)求(X,Y)的相关系数ρ;(2)问X和Y是否独立?
设随机变量X的概率密度为F(x)是X的分布函数,求随机变量Y=F(X)的分布函数。
已知P(A)=0.5,P(B)=0.7,则(I)在怎样的条件下,P(AB)取得最大值?最大值是多少?(Ⅱ)在怎样的条件下,P(AB)取得最小值?最小值是多少?
假设二维随机变量(X1,X2)的协方差矩阵为其中σij=Cov(Xi,Xj)(i,j=1,2),如果X1与X2的相关系数为ρ,那么行列式|∑|=0的充分必要条件是()
从正态总体N(3.4,62)中抽取容量为n的样本,如果要求其样本均值位于区间(1.4,5.4)内的概率不小于0.95,问样本容量n至少应取多大?
对任意两个随机事件A,B,已知P(A—B)=P(A),则下列等式不成立的是().
验收成箱包装的玻璃器皿,每箱24只装.统计资料表明,每箱最多有2只残品,且含0,1,2件残品的箱各占80%,15%,5%.现在随意抽取一箱,随意检验其中4只;若未发现残品则通过验收,否则要逐一检验并更换.试求(1)一次通过验收的概率;(2)通过验收的箱
随机试题
把“件”作为归档文件整理单位的出发点是()
Bornin1982inMelbourne,Australia,withoutanymedicalexplanationorwarning,NicholasVujiciccameintotheworldwithnei
支、吊架不宜设置在风口、阀门、检查门及自控机构处,离风口或插接管的距离不宜小于()mm。
水运工程施工招标中,在资格预审文件停止发售之日止获取资格预审文件的潜在投标人少于()个的,招标人应当依照规定进行重新招标。
申请人对县级以上地方各级人民政府工作部门的具体行政行为不服的,可以申请行政复议,关于该行政复议的说法,正确的有()。
如果游客推迟抵达,地陪应该()。
阅读下面两首诗,回答问题。暮春[宋]黄庚芳事阑珊三月时,春愁惟有落花知。柳绵飘白东风老,一树斜阳叫子规。暮春山间
考生文件夹下有一个数据库文件“samp1.accdb”,其中存在已经设计好的表对象“tStud”。请按照以下要求,完成对表的修改。将隐藏的“党员否”字段重新显示出来。
Itwasonceassumedthatalllivingthingscouldbedividedintotwofundamentalandexhaustivecategories.Multicellularplants
A、CoursesinBritishhistory.B、Languagecourses.C、Coursesinsports.D、Teachertrainingcourses.B
最新回复
(
0
)