首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A为n阶方阵,齐次线性方程组Ax=0有两个线性无关的解向量,A*是A的伴随矩阵,则( )
设A为n阶方阵,齐次线性方程组Ax=0有两个线性无关的解向量,A*是A的伴随矩阵,则( )
admin
2018-02-07
61
问题
设A为n阶方阵,齐次线性方程组Ax=0有两个线性无关的解向量,A
*
是A的伴随矩阵,则( )
选项
A、A
*
x=0的解均是Ax=0的解。
B、Ax=0的解均是A
*
x=0的解。
C、Ax=0与A
*
x=0没有非零公共解。
D、Ax=0与A
*
x=0恰好有一个非零公共解。
答案
B
解析
由题设知n—r(A)≥2,从而有r(A)≤n一2,故A
*
=,任意n维向量均是A
*
x=0的解,故正确选项是B。
转载请注明原文地址:https://kaotiyun.com/show/sXk4777K
0
考研数学二
相关试题推荐
设F(x,y)是一个二维随机向量(X,Y)的分布函数,x1
对离散型情形证明:(1)E(X+Y)=EX+EY.(2)EXY=EXEY
证明:当x≥5时,2x>x2.
在区问(-∞,+∞)内,方程|x|1/4+|x|1/2-cosx=0
设(X,Y)为连续型随机向量,已知X的密度函数fX(x)及对一切x,在X=x的条件下Y的条件密度fY|X(y|x).求:(1)密度函数f(x,y);(2)Y的密度函数fY(y);(3)条件密度函数fX|Y(x|y).
设3阶实对称矩阵A的各行元素之和均为3,向量α1=(-1,2,-1)T,α2=(0,-1,1)T是线性方程组Ax=0的两个解.求正交矩阵Q和对角矩阵A,使得QTAQ=A.
设3阶实对称矩阵A的各行元素之和均为3,向量α1=(-1,2,-1)T,α2=(0,-1,1)T是线性方程组Ax=0的两个解.求A的特征值与特征向量;
设矩阵A与B相似,且求可逆矩阵P,使P-1AP=B.
设二次型f(x1,x2,x3)=xTAX=ax12+2x22-2x32+2bx1x3(6>o),其中二次型的矩阵A的特征值之和为1,特征值之积为-12.利用正交变换将二次型,化为标准形,并写出所用的正交变换和对应的正交矩阵.
考虑二次型f=x12+4x22+4x32+2λx1x2-2x1x3+4x2x3,问λ取何值时,f为正定二次型.
随机试题
胆道蛔虫病的发病原因不包括
事故调查报告由负责组织事故调查的()批复。
根据自然人的年龄和精神健康状况,自然人可划分为()。
甲、乙、丙三人共同设立H有限责任公司,出资比例分别为70%、25%、5%。自2005年开始,公司的生产经营状况严重恶化,甲、乙、丙_三人之间互不配合,不能作出任何有效决议。甲提议通过股权转让摆脱困境被其他殴东拒绝。下列说法正确的是()。
某次认知能力测试,刘强得了118分,蒋明的得分比王丽高,张华和刘强的得分之和大于蒋明和工丽的得分之和,刘强的得分比周梅高;此次测试120分以上为优秀,五人之中有两人没有达到优秀。根据以上信息,以下哪项是上述五人在此次测试中得分由高到低的排列()
保险的最大诚信原则是指保险双方当事人在签订和履行保险合同的整个过程中,必须诚实守信,以最大的诚意恪守信用,如实告知重要情况,不欺骗不隐瞒,并保证正确履行各自的权利和义务。下列选项中,投保人没有履行最大诚信原则的是()。
“三纲五常”的主要内容是什么?
TribalmasksofWestAfricadepictancestors,spiritbeingsandinvisiblepowers.Intribalceremonialeventsthepeopleexpress
资本主义经济危机的实质是()
PassageOne(1)Arecentarticleindicatedthatbusinessschoolsweregoingtoencouragethestudyofethicsaspartofthe
最新回复
(
0
)