首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设n元非齐次线性方程组Ax=b有解η*,r(A)=r<n,证明:方程组Ax=b有n一r+1个线性无关的解,而且这n一r+1个解可以线性表示方程组Ax=b的任一解.
设n元非齐次线性方程组Ax=b有解η*,r(A)=r<n,证明:方程组Ax=b有n一r+1个线性无关的解,而且这n一r+1个解可以线性表示方程组Ax=b的任一解.
admin
2018-08-03
56
问题
设n元非齐次线性方程组Ax=b有解η
*
,r(A)=r<n,证明:方程组Ax=b有n一r+1个线性无关的解,而且这n一r+1个解可以线性表示方程组Ax=b的任一解.
选项
答案
由条件知齐次线性方程组Ax=0的基础解系含n一r个向量,设这个基础解系为ξ
1
,ξ
2
,…,ξ
n—r
.则向量组 η
*
,η
*
+ξ
1
,…,η
*
+ξ
n—r
(*) 满足题意.首先,由解的性质易知(*)式中的n一r+1个向量均为方程组Ax=b的解;其次,由上题知(*)式中的向量组线性无关;再次,设x为方程组Ax=b的任一解,则x—η
*
为方程组Ax=0的解,因此x—η
*
可由ξ
1
,…,ξ
n—r
,线性表示,即存在一组常数志k
1
,…,k
n—r
,使得 x—η
*
=k
1
ξ
1
+…+k
n—r
ξ
n—r
得 x=η
*
+k
1
ξ
1
+…+k
n—r
ξ
n—r
=(1一k
1
一…一k
n—r
)η
*
+k
1
(η
*
+ξ
1
)+…+k
n—r
(η
*
+ξ
n—r
). 即x可由向量组(*)线性表示.综上可知向量组(*)满足要求.
解析
转载请注明原文地址:https://kaotiyun.com/show/sgg4777K
0
考研数学一
相关试题推荐
设α,β是n维非零列向量,A=αβT+βαT.证明:r(A)≤2.
设A为m×n阶矩阵,且r(A)=m<n,则().
设A,B为两个n阶矩阵,下列结论正确的是().
质量为1g的质点受外力作用作直线运动,外力和时间成正比,和质点的运动速度成反比,在t=10s时,速度等于50cm/s.外力为39.2cm/s2,问运动开始1min后的速度是多少?
设y=y(x)二阶可导,且y’≠0,x=x(y)是y=y(x)的反函数.(1)将x=x(y)所满足的微分方程=0变换为y=y(x)所满足的微分方程;(2)求变换后的微分方程满足初始条件y(0)=0,y’(0)=的解.
讨论方程组的解的情况,在方程组有解时求出其解,其中a,b为常数.
[*]则(Ⅱ)可写为BY=0,因为β1,β2,…,βn为(I)的基础解系,因此r(A)=n,β1,β2,…,βn线性无关,Aβ1=Aβ2=…=Aβn=0→A(β1,β2,…,βn)=O→ABT=O→BAT=O.→α1,α2,…,αn为BY=O的一组解,而
设A为n阶矩阵,若Ak—1α≠0,而Akα=0.证明:向量组α,Aα,…,Ak—1α线性无关.
考虑柱坐标系下的三重累次积分I=3dz.(Ⅰ)将I用直角坐标(Oxyz)化为累次积分;(Ⅱ)将I用球坐标化为累次积分;(Ⅲ)求I的值.
随机试题
下列是关于社会工作的主要服务领域,其中表述不正确的是()。
流动性风险
A.清营汤B.化斑汤C.白虎汤D.苇茎汤E.止嗽散治疗肺炎热陷心包证,应首选
A.绿黑色B.樱红色C.白色D.黄棕色E.紫色赭石的条痕色是()。
如图3-48所示。梁支座A的反力为:[2001年第45题]
下列关于飞机库建筑构造的说法中,正确的有()
报关企业及分支注册登记有效期为2年,延续的有效期为2年,延续申请在有效期届满40日前。()
思想政治教育是提高队伍素质的根本途径。( )
资产负债表“持有至到期投资”项目应根据()填列。
政治对法的影响、制约作用以及它对于法的主导地位,主要表现在()。
最新回复
(
0
)