首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设n元非齐次线性方程组Ax=b有解η*,r(A)=r<n,证明:方程组Ax=b有n一r+1个线性无关的解,而且这n一r+1个解可以线性表示方程组Ax=b的任一解.
设n元非齐次线性方程组Ax=b有解η*,r(A)=r<n,证明:方程组Ax=b有n一r+1个线性无关的解,而且这n一r+1个解可以线性表示方程组Ax=b的任一解.
admin
2018-08-03
28
问题
设n元非齐次线性方程组Ax=b有解η
*
,r(A)=r<n,证明:方程组Ax=b有n一r+1个线性无关的解,而且这n一r+1个解可以线性表示方程组Ax=b的任一解.
选项
答案
由条件知齐次线性方程组Ax=0的基础解系含n一r个向量,设这个基础解系为ξ
1
,ξ
2
,…,ξ
n—r
.则向量组 η
*
,η
*
+ξ
1
,…,η
*
+ξ
n—r
(*) 满足题意.首先,由解的性质易知(*)式中的n一r+1个向量均为方程组Ax=b的解;其次,由上题知(*)式中的向量组线性无关;再次,设x为方程组Ax=b的任一解,则x—η
*
为方程组Ax=0的解,因此x—η
*
可由ξ
1
,…,ξ
n—r
,线性表示,即存在一组常数志k
1
,…,k
n—r
,使得 x—η
*
=k
1
ξ
1
+…+k
n—r
ξ
n—r
得 x=η
*
+k
1
ξ
1
+…+k
n—r
ξ
n—r
=(1一k
1
一…一k
n—r
)η
*
+k
1
(η
*
+ξ
1
)+…+k
n—r
(η
*
+ξ
n—r
). 即x可由向量组(*)线性表示.综上可知向量组(*)满足要求.
解析
转载请注明原文地址:https://kaotiyun.com/show/sgg4777K
0
考研数学一
相关试题推荐
设f(x)在[a,+∞)上连续,f(a)<0,而存在且大于零.证明:f(x)在(a,+∞)内至少有一个零点.
设=A,证明:数列{an}有界.
设二维随机变量(X,Y)服从二维正态分布,且X~N(1,32),Y~N(0,42),且X,Y的相关系数为一.(1)求E(Z),D(Z);(2)求ρXY;(3)X,Z是否相互独立?为什么?
设A,B为三阶矩阵,且A~B,且λ1=1,λ2=2为A的两个特征值,|B|=2,求
设A,B都是三阶矩阵,A=,且满足(A*)-1B=ABA+2A2z,则B=___________.
设A,B都是n阶可逆矩阵,则().
设函数f(x,y)可微,,求f(x,y).
设f(x)是连续函数.
将函数f(x)=2+|x|(一1≤x≤1)展开成以2为周期的傅里叶级数,并求级数的和.
设随机变量X~B(1,),Y~E(1),且X与Y相互独立.记Z=(2X一1)Y,(Y,Z)的分布函数为F(y,z).试求:(Ⅰ)Z的概率密度fZ(z);(Ⅱ)F(2,一1)的值.
随机试题
行列式=______.
海金沙入汤剂宜阿胶入汤剂宜
A、金银花B、红花C、丁香D、洋金花E、蒲黄花粉粒众多,极面观略呈三角形的中药材是
A.手阳明经B.足阳明经C.足少阳经D.手少阳经E.足太阳经
关于路基冬期施工的说法,正确的有()。
近年来,因人员流动而造成的商业失密、市场()以及技术专利被窃取的现象日益增多,为此而对簿公堂的情况也越来越普遍。
法的效力与实效的区别与联系。
设总体服从u[0,θ],X1,X2,…,Xn为总体的样本,证明:为θ的一致估计.
下面选项中,按距离进行计算机网络分类的是()。
在VisualFoxPro中,有关参照完整性的删除规则正确的描述是( )。
最新回复
(
0
)