首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设αi=[αi1,αi2,…,αin]T(i=1,2,…,r;r<n)是n维实向量,且α1,α2,…,αr线性无关.已知β=[b1,b2,…,bn]T是线性方程组 的非零解向量,试判断向量组α1,α2,…,αr,β的线性相关性.
设αi=[αi1,αi2,…,αin]T(i=1,2,…,r;r<n)是n维实向量,且α1,α2,…,αr线性无关.已知β=[b1,b2,…,bn]T是线性方程组 的非零解向量,试判断向量组α1,α2,…,αr,β的线性相关性.
admin
2019-05-16
38
问题
设α
i
=[α
i1
,α
i2
,…,α
in
]
T
(i=1,2,…,r;r<n)是n维实向量,且α
1
,α
2
,…,α
r
线性无关.已知β=[b
1
,b
2
,…,b
n
]
T
是线性方程组
的非零解向量,试判断向量组α
1
,α
2
,…,α
r
,β的线性相关性.
选项
答案
因β是线性方程组AX=0的解,即Aβ=0,而[*],由[*]得α
1
T
β=α
2
T
β=…=α
r
T
β=0.因而β
T
α
1
=β
T
α
2
=…=β
T
α
r
=0.设 k
1
α
1
+k
2
α
2
+…+k
r
α
r
+kβ=0. ① 在上式两边左乘β
T
,利用β
T
α
i
=0(i=1,2,…,r),得 k
1
β
T
α
1
+k
2
β
T
α
2
+…+k
r
β
T
α
r
+kβ
T
β=kβ
T
β=0, 但β≠0,所以β
T
β=b
1
2
+b
2
2
+…+b
n
2
>0,于是k=0.代入式①得k
1
α
1
+k
2
α
2
+…+k
r
α
r
=0. 但α
1
,α
2
,…,α
r
线性无关,所以k
1
=k
2
=…=k
r
=0,故α
1
,α
2
,…,α
r
,β线性无关.
解析
转载请注明原文地址:https://kaotiyun.com/show/snc4777K
0
考研数学一
相关试题推荐
已知一2是A=的特征值,则x=______.
微分方程满足y(0)=1/2的特解是y=_________.
设A,B是n阶实对称可逆矩阵.则下列关系错误的是
回答下列问题记,证明AAT是正定矩阵.
已知P-1AP=,α1是A的属于λ1=1的特征向量,α2,α3是A的属于λ2=-1的线性无关的特征向量,则矩阵P是
设Ω={(x,y,z)|x2+y2≤3z,1≤z≤4},求三重积分
设某次考试的考生成绩服从正态分布,从中随机地抽取36位考生的成绩,算得平均成绩为66.5分,标准差为15分.问在显著性水平0.05下,是否可以认为这次考试全体考生的平均成绩为70分?并给出检验过程.[附表]:t分布表.P{t(n)≤tp(n)}=
设总体X的概率密度为其中θ为未知参数.X1,X2,…,Xn为来自该总体的简单随机样本.(Ⅰ)求θ的矩估计量;(Ⅱ)求θ的最大似然估计量.
设总体X的概率密度为其中θ为未知参数且大于零.X1,X2.…,Xn为来自总体X的简单随机样本.(Ⅰ)求θ的矩估汁量;(Ⅱ)求θ的最大似然估计量.
微分方程y’’+y’+y=的一个特解应具有形式(其中a,b为常数)()
随机试题
商务谈判中的讨价还价集中体现在()
咬肌间隙感染最常见的病灶牙是
“从一个处于私人地位的产生者身上扣除的一切,又会直接或间接地用来为处于社会成员们的这个生产者谋福利的性质”,即“取之于民,用之于民”,这是()提出的。
对于中、远地区(超过2000km)广播的短波发射台,天线发射前方1km以内,总坡度一般不应超过()。
汇总记账凭证账务处理程序是直接根据记账凭证逐笔登记总分类账的一种账务处理程序。()
海关签字,并加盖“海关验讫章”的出口报关单可作为()使用。
一般纳税人销售下列货物应当按照11%的税率征收增值税的有()。
根据下列资料,回答以下问题。国家统计局发布的数据显示,2012年7月份,社会消费品零售总额16315亿元,同比名义增长13.1%(扣除价格因素实际增长12.2%,以下除特殊说明外均为名义增长)。下列选项中,从消费形态看,2011年1—5月与
以下朝代国号名称的由来系根据封爵定国名的是()
Practiseansweringthesequestions.Whatkindofjobwouldyoumostliketohave?Whatarethemainproductsmadeinyou
最新回复
(
0
)