首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知α1,α2及β1,β2均是3维线性无关向量组. (Ⅰ)若γ不能由α1,α2线性表出,证明α1,α2,γ线性无关. (Ⅱ)证明存在三维向量δ,δ不能由α1,α2线性表出,也不能由β1,β2线性表出.
已知α1,α2及β1,β2均是3维线性无关向量组. (Ⅰ)若γ不能由α1,α2线性表出,证明α1,α2,γ线性无关. (Ⅱ)证明存在三维向量δ,δ不能由α1,α2线性表出,也不能由β1,β2线性表出.
admin
2016-04-14
94
问题
已知α
1
,α
2
及β
1
,β
2
均是3维线性无关向量组.
(Ⅰ)若γ不能由α
1
,α
2
线性表出,证明α
1
,α
2
,γ线性无关.
(Ⅱ)证明存在三维向量δ,δ不能由α
1
,α
2
线性表出,也不能由β
1
,β
2
线性表出.
选项
答案
(Ⅰ)设有数k
1
,k
2
,k
3
,使得 k
1
α
1
+k
2
α
2
+k
3
γ=0, 其中k
3
=0(若k
3
≠0,则[*](k
1
α
1
+k
2
α
2
),这和γ不能由α
1
,α
2
线性表出矛盾).则k
1
α
1
+k
2
α
2
=0.已知α
1
,α
2
线性无关,得k
1
=k
2
=0.故α
1
,α
2
,γ线性无关. (Ⅱ)α
1
,α
2
是2个3维向量,不可能表出所有3维向量,β
1
,β
2
也一样.若δ不能由α
1
,α
2
线性表出, 也不能由β
1
,β
2
线性表,则δ即为所求. 现设δ
1
不能由α
1
,α
2
线性表出,但可由β
1
,β
2
线性表示,设为δ
1
=x
1
β
1
+x
2
β
2
; 设δ
2
不能由β
1
,β
2
表出,但可由α
1
,α
2
线性表出,设δ
2
=y
1
α
1
+y
2
α
2
, 则向量δ=δ
1
+δ
2
既不能由α
1
,α
2
线性表出,也不能由β
1
,β
2
线性表出,向量δ即为所求. 因若δ=δ
1
+δ
2
=k
1
α
1
+k
2
α
2
, 则δ
1
=δ-δ
2
=(k
1
一y
1
)α
1
+(k
2
一y
2
)α
2
,这和δ
1
不能由α
1
,α
2
线性表出矛盾. (或δ
2
=δ+δ
2
(k
1
一x
1
)β
1
+(k
2
—x
2
)β
2
,这和δ
2
不能由β
1
,β
2
线性表出矛盾)
解析
转载请注明原文地址:https://kaotiyun.com/show/srw4777K
0
考研数学一
相关试题推荐
设f(x)满足:=0,xf"(x)-x2f’2(x)=1-e-2x且f(x)二阶连续可导,则().
设二元函数z=f(x,y)满足=excosy+y,又fx(x,0)=,f(0,y)=y,则f(x,y)=______________.
设函数,其中函数φ具有二阶导数,ψ具有一阶导数,则必有().
微分方程y’cosy=x-siny的通解为________
设A为n阶实对称矩阵,且A2A=A,r(A)=r(0<r<n),则行列式|A-2E|=________
设曲线y=ax2与y=lnx相切,两曲线及x轴所围图形为D求D绕y轴旋转一周所得旋转体的体积V
设函数y=y(x)满足微分方程y"-3y’+2y=2ex,且其图形在点(0,1)处的切线与曲线y=x2-x+1在该点的切线重合,求函数y=y(x).
在右半平面内向量A(x,y)=2xy(x4+y2)λi-x2(x4+y2)λj是二元函数u(x,y)的梯度,求参数λ,u(x,Y).
设A=(aij)为三阶非零矩阵,|A|为A的行列式,Aij为aij的代数余子式.若aij+Aij=0(i,j=1,2,3),则|A|=________.
用指定的变量替换法求:
随机试题
下面哪一类投资者属于QFII投资者?()
酸性电位水在下列温度条件下,随温度升高杀菌作用增强的是
健康教育的对象是()
下述哪项体征为深反射
甲公司同意乙公司以一项短期投资抵偿117万元应付帐款进行债务重组。该项短期投资帐面余额为120万元,单项计提跌价准备20万元,重组时市价为110万元。甲,乙公司各发生相关税费0.5万元。甲公司为该项债权计提11.7万元坏帐准备。在债务重组日,(
茉莉花:水仙花:月季
有人认为“意象”是一个外来词,是英文“image”的译文,并把它和20世纪初的英美意象派诗歌联系起来。但其实,意象是中国古代文艺理论固有的概念和词语,并不是外来的东西。以下各项如果为真,最能证明“意象”在我国的原生性的是()。
结合材料。回答问题:材料1:中国哲学家提出“和而不同”、“执两用中”的解决矛盾的辩证方式,如“和实生物,同则不继”、“尚和去同”、“君子和而不同,小人同而不和”、“礼之用,和为贵”、“致中和”、“执其两端,庸其中于民”即“执两用中”(庸即用),也就是“
Moveover,organic,fairtradeandfreerange—thelatestinenlightenedediblesishere:foodwith"embedded"positiveintention
Howmanypeoplelosttheirlivesintheepidemic?
最新回复
(
0
)