首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A是三阶实矩阵,λ1,λ2,λ3是A的三个不同的特征值,ξ1,ξ2,ξ3是三个对应的特征向量.证明:当λ2λ3≠0时,向量组ξ1,A(ξ1+ξ2),A2(ξ1+ξ2+ξ3)线性无关.
设A是三阶实矩阵,λ1,λ2,λ3是A的三个不同的特征值,ξ1,ξ2,ξ3是三个对应的特征向量.证明:当λ2λ3≠0时,向量组ξ1,A(ξ1+ξ2),A2(ξ1+ξ2+ξ3)线性无关.
admin
2016-09-19
32
问题
设A是三阶实矩阵,λ
1
,λ
2
,λ
3
是A的三个不同的特征值,ξ
1
,ξ
2
,ξ
3
是三个对应的特征向量.证明:当λ
2
λ
3
≠0时,向量组ξ
1
,A(ξ
1
+ξ
2
),A
2
(ξ
1
+ξ
2
+ξ
3
)线性无关.
选项
答案
因 [ξ
1
,A(ξ
1
+ξ
2
),A
2
(ξ
1
+ξ
2
+ξ
3
)]=[ξ
1
,λ
1
ξ
1
+λ
2
ξ
2
+λ
1
2
ξ
1
+λ
2
2
ξ
2
+λ
3
2
ξ
3
]=[ξ
1
,ξ
2
,ξ
3
][*] 因λ
1
≠λ
2
≠λ
3
,故ξ
1
,ξ
2
,ξ
3
线性无关,由上式知 ξ
1
,A(ξ
1
+ξ
2
),A
2
(ξ
1
+ξ
2
+ξ
3
)线性无关<=>[*]=λ
2
λ
3
2
≠0,即λ
2
λ
3
≠0.
解析
转载请注明原文地址:https://kaotiyun.com/show/tNT4777K
0
考研数学三
相关试题推荐
A、 B、 C、 D、 C
[*]
考虑一家商场某日5位顾客购买洗衣机的类型(直筒或滚筒).如果最多一位顾客购买滚筒洗衣机的概率为0.087,那么至少两位顾客购买滚筒洗衣机的概率是多大?
设向量组(Ⅰ):α1=(α11,α21,α31)T,α2=(α12,α22,α32)T,α3=(α12,α23,α33)T,向量组(Ⅱ):β1=(α11,α21,α31,α41)T,β2=(α12,α22,α32,α42)T,β3=(α12,α2
设α1,α2,…,αr,β都是n维向量,β可由α1,α2,…,αr线性表示,但β不能由α1,α2,…,αr-1线性表示,证明:αr可由α1,α2,…,αr-1,β线性表示.
设向量组α1,α2,…,αm线性无关,向量β1可用它们线性表示,β2不能用它们线性表示,证明向量组α1,α2,…,αm,λβ1+β2(λ为常数)线性无关.
设有向量组α1=(1,3,2,0),α2=(7,0,14,3),α3=(2,-1,0,1),α4=(5,1,6,2),α5=(2,-1,4,1),求:(1)向量组的秩;(2)求此向量组的一个极大线性无关组,并把其余的向量分别用该极大无关组线性表示.
用比较判别法判断的敛散性.
设证明:f(x,y)在点(0,0)处连续且可偏导,并求出fx(0,0)和fy(00)的值.
设A,B为3阶矩阵,且|A|=3,|B|=2,|A-1+B|=2,则|A+B-1|=_____________.
随机试题
商务谈判中的讨价还价集中体现在()
咬肌间隙感染最常见的病灶牙是
“从一个处于私人地位的产生者身上扣除的一切,又会直接或间接地用来为处于社会成员们的这个生产者谋福利的性质”,即“取之于民,用之于民”,这是()提出的。
对于中、远地区(超过2000km)广播的短波发射台,天线发射前方1km以内,总坡度一般不应超过()。
汇总记账凭证账务处理程序是直接根据记账凭证逐笔登记总分类账的一种账务处理程序。()
海关签字,并加盖“海关验讫章”的出口报关单可作为()使用。
一般纳税人销售下列货物应当按照11%的税率征收增值税的有()。
根据下列资料,回答以下问题。国家统计局发布的数据显示,2012年7月份,社会消费品零售总额16315亿元,同比名义增长13.1%(扣除价格因素实际增长12.2%,以下除特殊说明外均为名义增长)。下列选项中,从消费形态看,2011年1—5月与
以下朝代国号名称的由来系根据封爵定国名的是()
Practiseansweringthesequestions.Whatkindofjobwouldyoumostliketohave?Whatarethemainproductsmadeinyou
最新回复
(
0
)