首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
n维向量组α1,α2,…,αm(3≤m≤n)线性无关的充分必要条件是( )
n维向量组α1,α2,…,αm(3≤m≤n)线性无关的充分必要条件是( )
admin
2021-02-25
28
问题
n维向量组α
1
,α
2
,…,α
m
(3≤m≤n)线性无关的充分必要条件是( )
选项
A、存在一组不全为零的数k
1
,k
2
,…,k
m
,使k
1
α
1
+k
2
α
2
+…+k
m
α
m
≠0
B、α
1
,α
2
,…,α
m
中任意两个向量都线性无关
C、α
1
,α
2
,…,α
m
中存在一个向量,它不能由其余向量线性表示
D、α
1
,α
2
,…,α
m
中任何一个向量都不能由其余向量线性表示
答案
D
解析
本题考查向量组线性无关的概念.若只有当k
1
=k
2
=…k
m
=0时,有k
1
α
1
+k
2
α
2
+…+k
m
α
m
=0.其等价的说法是向量组α
1
,α
2
,…,α
m
中任意一个向量都不能用其余的向量线性表出.
因为α
1
,α
2
,…,α
m
线性相关的充分必要条件是“向量组中至少存在一个向量可用其余的向量线性表示”,而与这个条件对立的是“α
1
,α
2
,…,α
m
中任意一个向量都不能用其余的向量线性表示”,故选D.
转载请注明原文地址:https://kaotiyun.com/show/ti84777K
0
考研数学二
相关试题推荐
设f(x)在[a,b]上有二阶连续导数,求证:∫abf(x)dx=(b-a)[f(a)+f(b)]+∫abf"(x)(x-a)(x-b)dx.
计算二重积.其中积分区域D={(x,y)|x2+y2≤π).
一个高为l的柱体形贮油罐,底面是长轴为2a,短轴为2b的椭圆。现将贮油罐平放,当油罐中油面高度b时(如图1—3—4),计算油的质量。(长度单位为m,质量单位为kg,油的密度为常数ρkg/m3)
设y=f(x)为区间[0,1]上的非负连续函数.设f(x)在(0,1)内可导,且f’(x)>,证明(1)中的c是唯一的.
设三角形三边的长分别为a、b、c,此三角形的面积为S.求此三角形内的点到三边距离乘积的最大值,并求出这三个相应的距离.
已知A是三阶矩阵,a1,a2,a3是线性无关的三维列向量,满足(Ⅰ)求矩阵A的特征值;(Ⅱ)求矩阵A的特征向量;(Ⅲ)求矩阵A*一6E的秩.
(2008年)设n元线性方程组Aχ=b,其中(Ⅰ)证明行列式|A|=(n+1)an;(Ⅱ)当a为何值时,该方程组有唯一的解,并在此时求χ1;(Ⅲ)当a为何值时,该方程组有无穷多解,并在此时求其通解.
设α1,α2,…,αs均为n维列向量,A是m×n矩阵,下列选项正确的是
“对任意给定的ε∈(0,1),总存在正整数N,当n>N时,恒有|xn-a|≤2ε”是数列{xn}收敛于a的
设φ连续,且x2+y2+z2=∫xyφ(x+y-t)dt,求
随机试题
常发生于尿路器械检查后的细菌是
痛风性关节炎最常见的好发部位为膝关节。()
按照现行土地分类,商服用地包括()。
灭火器配置场所的危险等级可分为()。
2011年6月30日,甲公司以增发1200万股、市价12000万元的自身普通股为对价从乙公司的原股东丙公司处购入乙公司70%的股份,实现了企业合并。合并前甲公司与丙公司、乙公司不存在关联关系。甲公司增发1200万股之前,原股本总额为800万元,全部为A公
“因为中国资产阶级根本上与剥削农民的豪绅地主相联结相混合,中国革命要推翻豪绅地主阶级,便不能不同时推翻资产阶级。”这一观点的主要错误是
简述社会主义市场经济的确立。
AccordingtostudiescitedbytheNationalEatingDisordersAssociation,42percentofgirlsinfirstthroughthirdgradewantt
下列循环执行的次数是( )。inty=2,x;4;while(--x!=x/y){}
有以下程序main(){intx=1,y=0,a=0,b=0switch(x){case1:switch(y){case0:a++;break;case1:b++;break;}
最新回复
(
0
)