首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设n阶矩阵A满足(aE一A)(bE一A)一0且a≠b.证明:A可对角化.
设n阶矩阵A满足(aE一A)(bE一A)一0且a≠b.证明:A可对角化.
admin
2016-10-24
40
问题
设n阶矩阵A满足(aE一A)(bE一A)一0且a≠b.证明:A可对角化.
选项
答案
由(aE一A)(bE一A)=0,得|aE一A|.|bE一A|=0,则|aE一A|=0或者|bE一A|=0.又由(aE一A)(bE一A)=0,得r(aE一A)+r(bE一A)≤n. 同时r(aE一A)+r(bE一A)≥r[(aE一A)一(bE一A)]=r[(a一b)E]=n. 所以r(aE一A)+r(bE一A)=n. (1)若|aE一A|≠0,则r(aE一A)=n,所以r(bE一A)=0,故A=bE. (2)若|bE一A|≠0,则r(bE一A)=n,所以r(aE一A)=0,故A=aE. (3)若|aE一A|=0且|bE一A|=0,则a,b都是矩阵A的特征值,方程组(aE一A)X=0的基础解系含有n一r(aE一A)个线性无关的解向量,即特征值a对应的线性无关的特征向量个数为n一r(aE一A)个; 方程组(bE一A)X=0的基础解系含有n一r(bE一A)个线性无关的解向量,即特征值b对应的线性无关的特征向量个数为n一r(bE一A)个. 因为n一r(aE一A)+n一r(bE一A)=n,所以矩阵A有n个线性无关的特征向量,所以A一定可以对角化.
解析
转载请注明原文地址:https://kaotiyun.com/show/tzH4777K
0
考研数学三
相关试题推荐
证明:双曲线xy=a2上任一点处的切线与两坐标轴构成的三角形的面积都等于2a2.
将函数f(x)=e2x,x∈[0,π]展开成余弦级数.
设向量a与b不共线,问λ为何值时,向量P=λa+5b与q=3a-b共线?
求下列微分方程的通解:(1)y〞=xex;(2)(1+x2)y〞=1;(3)y〞+yˊ=x2;(4)y〞=1+yˊ2;(5)x2y〞=yˊ2+2xyˊ;(6)(1-y)y〞+2yˊ2=0;(7);(8)y〞+yˊ2=
已知函数y=f(x)为一指数函数与一幂函数之积,满足:(2)y=f(x)在(-∞,+∞)内的图形只有一条水平切线与一个拐点,试写出f(x)的一个可能的表达式.
从平面xOy上求一点,使它到x=0,y=0及x+2y-16=0三直线的距离平方之和为最小.
设函数f(x)在闭区间[-1,1]上具有三阶连续导数,且f(-1)=0,f(1)-1,f’(0)=0,证明:在开区间(-1,1)内至少存在一点ξ,使f"’(ξ)=3.
设A为3阶矩阵,|A|=3,A*为A的伴随矩阵.若交换A的第1行与第2行得矩阵B,则|BA*|=__________.
求下列向量组的一个极大线性无关组,并把其余向量用极大线性无关组线性表示:α1=(1,3,2,0),α2=(7,0,14,3),α3=(2,-1,0,1),α4=(5,1,6,2),α4=(2,-1,4,1).
一生产线生产的产品成箱包装,每箱的重量是随机的.假设每箱平均重50千克,标准差为5千克.若用最大载重为5吨的汽车承运,试利用中心极限定理说明每辆最多可以装多少箱,才能保障不超载的概率大于0.9777(Ф(2)=0.977,其中Ф(x)是标准正态分布函数).
随机试题
泥泞迟子建北方的初春是肮脏的,这肮脏当然源自我们曾经热烈赞美过的纯洁无瑕的雪。在北方漫长的冬季里,寒冷催生了一场又一场的
A.肌张力低下B.肌张力增高C.原始反射D.立直反射E.平衡反射婴儿特有的一过性反射是
辨别寒热真假时要注意,真象常出现于()
甲是A国驻B国大使馆的商务参赞,乙是C国驻B国大使馆的随员。甲与B国人丙发生债务纠纷。甲向B国法院对丙提起民事诉讼,丙对甲就同一债务关系提起反诉,并要求乙作为证人出庭作证。根据国际法规则,下列哪个判断是正确的?()
建设单位应当自建设工程竣工验收合格之日起()日内,将竣工验收报告和规划、公安消防、环保部门出具的认可文件或者准许使用文件报建设行政主管部门或者其人有关部门备案。
某机电安装工程公司承包了某工业厂房的管道安装工程。在施工过程中,施工项目部特别重视该工程的施工方法和操作工艺,对每一工序都制订了具体的控制方法。该管道工程属于高温、高压管道工程,为此,施工总承包企业在选择管道时主要从耐高强、耐热、耐腐蚀、高密封和防
燃气轮机中常用的液体燃料有()等。
中国有文字记载的最早的帝王巡游是在公元前()左右。
《中华人民共和国义务教育法》是我国教育的宪法。()
Whereprobablyarethespeakers?
最新回复
(
0
)