首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设有方程组AX=0与BX=0,其中A,B都是m×n阶矩阵,下列四个命题: (1)若AX=0的解都是BX=0的解,则r(A)≥r(B) (2)若r(A)≥r(B),则AX=0的解都是BX=0的解 (3)若AX=0与BX=0同解,则r(A)=r(B) (4)若
设有方程组AX=0与BX=0,其中A,B都是m×n阶矩阵,下列四个命题: (1)若AX=0的解都是BX=0的解,则r(A)≥r(B) (2)若r(A)≥r(B),则AX=0的解都是BX=0的解 (3)若AX=0与BX=0同解,则r(A)=r(B) (4)若
admin
2019-09-27
47
问题
设有方程组AX=0与BX=0,其中A,B都是m×n阶矩阵,下列四个命题:
(1)若AX=0的解都是BX=0的解,则r(A)≥r(B)
(2)若r(A)≥r(B),则AX=0的解都是BX=0的解
(3)若AX=0与BX=0同解,则r(A)=r(B)
(4)若r(A)=r(B),则AX=0与BX=0同解
以上命题正确的是( ).
选项
A、(1)(2)
B、(1)(3)
C、(2)(4)
D、(3)(4)
答案
B
解析
若方程组AX=0的解都是方程组BX=0的解,则n-r(A)≤n-r(B),从而r(A)≥r(B),(1)为正确的命题;显然(2)不正确;因为同解方程组系数矩阵的秩相等,但反之不对,所以(3)是正确的,(4)是错误的,选B.
转载请注明原文地址:https://kaotiyun.com/show/u1S4777K
0
考研数学一
相关试题推荐
设α1,α2,α3线性无关,β1可由α1,α2,α3线性表示,β2不可由α1,α2,α3线性表示,对任意的常数k有().
不等式的解集(用区间表示)为[].
设矩阵是满秩的,则直线
设A为4×3矩阵,η1,η2,η3是非齐次线性方程组Ax=β的3个线性无关的解,k1,k2为任意常数,则Ax=β的通解为
设A是三阶矩阵,α1,α2,α3是线性无关的三维列向量,且满足Aα1﹦-2α1-4α3,Aα2﹦α1﹢2α2﹢α3,Aα3﹦α1﹢3α3。(I)求矩阵A的特征值;(Ⅱ)求可逆矩阵P使得P-1AP为对角阵。
设A是n阶可逆方阵(n≥2),A*是A的伴随矩阵,则(A*)*﹦()
设二次型f(x1,x2,x3)﹦xTAx﹦ax12﹢6x22﹢3x32-4x1x2-8x1x3-4x2x3,其中-2是二次型矩阵A的一个特征值。(I)求a的值;(Ⅱ)试用正交变换将二次型f化为标准形,并写出所用的正交变换。
设A,B均为n阶矩阵,A可逆,且A与B相似,则下列命题中正确的个数为()①AB与BA相似;②A2与B2相似;③AT与BT相似;④A-1与B-1相似。
已知R3的两个基分别为求由基α1,α2,α3到基β1,β2,β3的过渡矩阵P.
随机试题
某被评估企业持有另一企业优先股1000股,每股面值10元,年股息率为10%,发行价为15元。评估时,国库券利率为7%,确定的风险报酬率为1%,则该批优先股的评估价值为()
桂枝的功效是
A.药物中毒B.严重挤压伤C.双侧输尿管结石D.大面积烧伤E.缺血、血容量减少肾前性急性肾衰常见的原因()
我国对于商业银行流动性监管采用的主要指标有()
常用的存货数量盘存方法有()。
一、注意事项1.申论考试是对应考者阅读理解能力、综合分析能力、提出和解决问题能力,文字表达能力的综合测试。2.作答参考时限:阅读资料30分钟,作答时间120分钟。3.仔细阅读所给资料,按照“申论要求”在专用答题卡上依次作答。二、
InOctober2002,GoldmanSachsandDeutscheBank(1)_____anewelectronicmarket(www.gs.com/econderivs)foreconomicindicest
Anine-year-oldschoolgirlsingle-handedlycooksupascience-fairexperimentthatendsupdebunking(揭穿......的真相)awidelypract
SpeakerA:So,what’sthestatusofouradvertisingcampaign?SpeakerB:AsImentionedbefore,it’llbeanationalcampaignstart
【B1】【B9】
最新回复
(
0
)