首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
判断 是否可对角化?并说明理由.
判断 是否可对角化?并说明理由.
admin
2017-06-14
21
问题
判断
是否可对角化?并说明理由.
选项
答案
[*] =(λ+a-1)(λ-a)(λ—a-1) =>λ
1
=1-a,λ
2
=a,λ
3
=a+1. 1)当λ
1
,λ
2
,λ
3
两两不相同时,即λ
1
≠λ
2
,λ
1
≠λ
3
,λ
2
≠λ
3
=>[*]a≠0,此时A可对角化; 2)当[*]A不可对角化; 3)当a=0时,λ
1
=λ
2
=1,λ
3
=0,r(1.E—A)=2,A不可对角化.
解析
转载请注明原文地址:https://kaotiyun.com/show/upu4777K
0
考研数学一
相关试题推荐
具有特解y1=e-x,y2=2xe-x,y3=3ex的三阶常系数齐次线性微分方程是
设随机变量X服从正态分布N(μ,σ2)(σ>0),且二次方程y2+4y+X=0无实根的概率为1/2,则μ=___________.
设n元线性方程组Ax=b,其中当a为何值时,该方程组有无穷多解,并求通解.
设3阶实对称矩阵A的特征值λ1=1,λ2=2,λ3=-2,α1=(1,-1,1)T是A的属于λ1的一个特征向量.记B=A5-4A3+E,其中E为3阶单位矩阵.验证α1是矩阵曰的特征向量,并求B的全部特征值的特征向量;
设A为3阶矩阵,a1,a2为A的分别属于特征值-1,1的特征向量,向量a3满足Aa3=a2+a3,(Ⅰ)证明a1,a2,a3线性无关;(Ⅱ)令P=(a1,a2,a3),求P-1AP.
设a1,a2,…,at为AX=0的一个基础解系,β不是AX=0的解,证明:β,β+a1,β+a2,…,β+at线性无关.
(2007年试题,22)设3阶对称矩阵A的特征值λ1=1,λ2=2,λ3=一1,且α1=(1,一1,1)T是A的属于λ1的一个特征向量,记B=A5一4A3+E,其中E为3阶单位矩阵.求矩阵B.
设二维随机变量(X,Y)在区域D={(x,y)|0≤y≤1,y≤x≤y+1}上服从均匀分布,令Z=X—Y,求X与Y的边缘概率密度函数并判断随机变量X与y的独立性;
设函数y=y(x)由方程ylny-x+y=0确定,判断曲线y=y(x)在点(1,1)附近的凹凸性.
随机试题
(2019年德州临邑)巴甫洛夫研究的条件反射称为操作性条件反射,斯金纳研究的条件反射称为经典性条件反射。()
若框式水平仪的斜率为0.02/1000,其含义就是测量面与自然水平倾斜约为()。
刷牙方法不当可以造成
下列各项中,体现实质重于形式会计信息质量要求的是()。
2007年4月某股份有限公司成功公开发行了3年期公司债券1200万元,1年期公司债券800万元。该公司截至2008年9月30日的净资产额为8000万元,计划于2008年10月再次公开发行公司债券。根据证券法律制度的规定,该公司此次发行公司债券额最多不得超过
学校体育在其具体实施过程中,主要通过下列哪三个组织形式?()
19世纪.()发现了元素周期律。
保险经营的环节。
下列关于栈的描述正确的是
可以用p.a的形式访问派生类对象p的基类成员a,其中a是
最新回复
(
0
)