首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设有齐次线性方程组Aχ=0和Bχ=0,其中A,B均为m×n矩阵,现有4个命题: ①若Aχ=0的解均是Bχ=0的解,则r(a)≥r(B); ②若r(A)≥r(B),则Aχ=0的解均是Bχ=0的解; ③若Aχ=0与Bχ=0同解,则r(A
设有齐次线性方程组Aχ=0和Bχ=0,其中A,B均为m×n矩阵,现有4个命题: ①若Aχ=0的解均是Bχ=0的解,则r(a)≥r(B); ②若r(A)≥r(B),则Aχ=0的解均是Bχ=0的解; ③若Aχ=0与Bχ=0同解,则r(A
admin
2018-11-22
56
问题
设有齐次线性方程组Aχ=0和Bχ=0,其中A,B均为m×n矩阵,现有4个命题:
①若Aχ=0的解均是Bχ=0的解,则r(a)≥r(B);
②若r(A)≥r(B),则Aχ=0的解均是Bχ=0的解;
③若Aχ=0与Bχ=0同解,则r(A)=r(B);
④若r(A)=r(B),则Aχ=0与Bχ=0同解.
以上命题中正确的有( )
选项
A、①②
B、①③
C、②④
D、③④
答案
B
解析
由于线性方程组Aχ=0和Bχ=0之间可以无任何关系,此时其系数矩阵的秩之间的任何关系都不会影响它们各自解的情况,所以②,④显然不正确,利用排除法,可得正确选项为B.
下面证明①,③正确:
对于①,由Aχ=0的解均是Bχ=0的解可知,方程组Bχ=0含于Aχ=0之中,从而Aχ=0的有效方程的个数(即为r(A))必不少于Bχ=0的有效方程的个数(为r(B)),故
r(A)≥r(B).
对于③,由于A,B为同型矩阵,若Aχ=0与Bχ=0同解,则其解空间的维数(即基础解系包含解向量的个数)相同,即
n-r(A)=n-r(B),
从而r(A)=r(B).所以应选B.
转载请注明原文地址:https://kaotiyun.com/show/vEM4777K
0
考研数学一
相关试题推荐
设矩阵A=,则下列矩阵中与矩阵A等价、合同但不相似的是()
设A为三阶矩阵,λ1,λ2,λ3是A的三个不同的特征值,对应的特征向量分别为α1,α2,α3,令β=α1+α2+α3。如果A3β=Aβ,求秩r(A-E)及行列式|A+2E|。
将函数f(x)=1-x2(0≤x≤π)用余弦级数展开,并求的和。
设随机变量U在区间[-2,2]上服从均匀分布。随机变量试求:X和Y的联合概率分布;
设函数f(x)=1-,数列{xn}满足0<x1<1且xn+1=f(xn)。证明f(x)在(-1,1)上有且只有一个零点;
设A,B为n阶对称矩阵,下列结论不正确的是()
若y=xex+x是微分方程y"-2y’+ay=bx+c的解,则()
函数y=()
设直线则直线L1,L2的夹角为().
将第二个方程对t求导并注意y=y(t)得[*]
随机试题
结石性胆囊炎临床症状明显者的根本治疗方法应用
有关锐利度和模糊度的叙述,错误的是
下列穴位中,可治疗痔疮的是
A.左侧卧位B.坐位身体前倾C.仰卧位D.右侧卧位E.从卧位或下蹲位迅速站立下列疾病,听诊时采用上述哪种呼吸或体位,杂音最清晰
背景资料:某大型水利水电工程由政府投资兴建。项目法人委托某招标代理公司代理施工招标。招标代理公司依据有关规定确定该项目采用公开招标方式招标,招标公告在当地政府规定的招标信息网上发布。招标文件中规定:投标担保可采用投标保证金或投标保函方式担保。评标方法采用
各相关机关和单位在实施工程建设强制性标准的监督管理中的作用是()。
按照《建设工程质量管理条例》的规定,( )单位不得转包或者违法分包工程项目。
下面是天津、上海、北京、重庆四城市某日的天气预报。已知四城市有三种天气情况,天津和北京的天气相同,上海和重庆当天都没有雨,那么,以下判断不正确的是( )
一只蚂蚁发现了一只死螳螂,立刻回洞找来10只蚂蚁搬,搬不动;然后每只蚂蚁回去各找来10只蚂蚁,还是搬不动;于是每只蚂蚁又回去找来10个伙伴,大家齐心协力,终于把死螳螂拖回洞里。问一共有多少只蚂蚁参加了搬运?
MeaninginLiteratureI.AUTHOR—Interpretauthor’sintendedmeaningbya)Readingotherworksby【T1】_____【T1】______b)Knowingc
最新回复
(
0
)