首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A为3阶矩阵,α1,α2,α3是线性无关的3维列向量,且满足 Aα1=α1+α2+α3,Aα2=2α2+α3,Aα3=2α2+3α3。 求可逆矩阵P使得P—1AP为对角矩阵。
设A为3阶矩阵,α1,α2,α3是线性无关的3维列向量,且满足 Aα1=α1+α2+α3,Aα2=2α2+α3,Aα3=2α2+3α3。 求可逆矩阵P使得P—1AP为对角矩阵。
admin
2019-03-23
36
问题
设A为3阶矩阵,α
1
,α
2
,α
3
是线性无关的3维列向量,且满足
Aα
1
=α
1
+α
2
+α
3
,Aα
2
=2α
2
+α
3
,Aα
3
=2α
2
+3α
3
。
求可逆矩阵P使得P
—1
AP为对角矩阵。
选项
答案
已得知B的特征值分别是1,1,4,于是解(E—B)x=0,得矩阵B属于特征值1的线性无关的特征向量β
1
=(—1,1,0)
T
,β
2
=(—2,0,1)
T
;解(4E—B)x=0,得矩阵B属于特征值4的特征向量β
2
=(0,1,1)
T
。 令P
2
=(β
1
,β
2
,β
3
),则有P
2
—1
BP
2
=[*],将P
1
—1
AP
1
=B代入可得 P
2
—1
P
1
—1
AP
1
P
2
=[*] 令P=P
1
P
2
=(α
1
,α
2
,α
3
)[*]=(—α
1
+α
2
,—2α
1
+α
3
,α
2
+α
3
), 则 P
—1
AP=[*]
解析
转载请注明原文地址:https://kaotiyun.com/show/vHV4777K
0
考研数学二
相关试题推荐
设A和B都是m×n实矩阵,满足r(A+B)=n,证明ATA+BTB正定.
设α1,α2,…,αs,β都是n维向量,证明:
设齐次方程组(I)有一个基础解系β1=(b11,b12,…,b1×2n)T,β2=(b21,b22,…,b2×2n)T,…,βn=(bn1,bn2,…,bn×2n)T.证明A的行向量组是齐次方程组(Ⅱ)的通解.
设①a,b取什么值时存在矩阵X,满足AX-CX=B?②求满足AX-CX=B的矩阵X的一般形式.
设(Ⅰ)和(Ⅱ)都是3元非齐次线性方程组,(Ⅰ)有通解ξ1+c1η1+c2η2,ξ1=(1,0,1),η1=(1,1,0),η2=(1,2,1);(Ⅱ)有通解ξ2+cη,ξ2=(0,1,2),η=(1,1,2).求(Ⅰ)和(Ⅱ)的公共解.
设(Ⅰ)和(Ⅱ)是两个四元齐次线性方程组,(Ⅰ)为(Ⅱ)有一个基础解系(0,1,1,0)T,(-1,2,2,1)T.求(Ⅰ)和(Ⅱ)的全部公共解.
已知ξ1=(-3,2,0)T,ξ2=(-1,0,-2)T是方程组的两个解,则此方程组的通解是________.
A是n阶矩阵,数a≠b.证明下面3个断言互相等价:(1)(A-aE)(A-bE)=0.(2)r(A-aE)+r(A-bE)=n.(3)A相似于对角矩阵,并且特征值满足(λ-a)(λ-b)=0.
设f(x)在[a,b]上可导f’(x)+[f(x)]2一∫axf(t)dt=0,且∫a-bf(t)dt=0.证明:∫axf(t)dt在(a,b)内恒为零。
随机试题
四川茶叶的质量和产量在()以前都居全国首位。
财务报表
A.卡维地洛B.硝普钠C.普萘洛尔D.胍乙啶E.甲基多巴α受体阻断药是
A.GLPB.GAPC.GIPD.GCP确保实验资料的真实性、完整性和可靠性,保障人民用药安全,并与国际上的新药管理接轨的是()
一般冷疗时间不超过()。
我国的土地他项权利特点有()。
()负责依法实施外汇监督检查,对违反外汇管理的行为进行处罚。
某住宅小区内有一长方形空地,开发商想在此空地内修筑宽为2米的石子路,如图所示,余下部分绿化,则绿化的面积为_______m2.
【B1】【B17】
NeedaBrainBoost?Exercise!A)Ifyouspendyourworkdayatadesk,youknowthatfamiliaranddreadedfeeling:themid-aftern
最新回复
(
0
)