首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设有两个非零矩阵A=[a1,a2,…,an]T,B=[b1,b2,…,bn]T. 设C=E—ABT,其中E为n阶单位阵.证明:CTC=E一BAT—ABT+BBT的充要条件是ATA=1.
设有两个非零矩阵A=[a1,a2,…,an]T,B=[b1,b2,…,bn]T. 设C=E—ABT,其中E为n阶单位阵.证明:CTC=E一BAT—ABT+BBT的充要条件是ATA=1.
admin
2015-08-17
56
问题
设有两个非零矩阵A=[a
1
,a
2
,…,a
n
]
T
,B=[b
1
,b
2
,…,b
n
]
T
.
设C=E—AB
T
,其中E为n阶单位阵.证明:C
T
C=E一BA
T
—AB
T
+BB
T
的充要条件是A
T
A=1.
选项
答案
由于C
T
C=(E一AB
T
)
T
(E一AB
T
)=(E一BA
T
)(E—AB
T
)=E一BA
T
一AB
T
+BA
T
AB
T
,故若要求C
T
C=E-BA
T
一AB
T
+BB
T
,则BA
T
AB
T
-BB
T
=O,B(A
T
A一1)B
T
=O,即(A
T
A一1)BB
T
=O.因为B≠O,所以BB
T
≠O.故C
T
C=E-BA
T
一BB
T
+BB
T
的充要条件是A
T
A=1.
解析
转载请注明原文地址:https://kaotiyun.com/show/w1w4777K
0
考研数学一
相关试题推荐
已知线性方程组问k1和k2各取何值时,方程组无解?有唯一解?有无穷多组解?在方程组有无穷多组解时,试求出一般解.
设fn(χ)=Cn1cosχ-Cn2cos2χ+…+(-1)n-1Cnncosnχ,证明:对任意自然数n,方程fn(χ)=在区间(0,)内有且仅有一个根.
设向量组α1,α2,…,αs(s≥2)线性无关,且β1=α1+α2,β2=α2+α3,…,βs-1=αs-1+αs,βs=αs+α1,讨论向量组β1,β2,βs的线性相关性.
设向量组α1=(1,3,2,0)T,α2=(7,0,14,3)T,α3=(2,一1,0,1)T,α4=(5,1,6,2)T,α5=(2,一1,4,1)T,求该向量组的秩和一个极大线性无关组,并把不是极大线性无关组的向量用此极大线性无关组线性表示.
已知三阶矩阵A的第一行是(a,b,c),a,b,c不全为零,矩阵B=(k为常数),且AB=O,求线性方程组Ax=0的通解。
设A是n(n≥3)阶矩阵,证明:(A*)*=|A|n-2A.
一个袋内装有5个白球,3个红球.第一次从袋内任意取一个球,不放回,第二次又从袋内任意取两个球,Xi表示第i次取到的白球数(i=1,2).求:P{X1=0,X2≠0},P{X1=X2},P{X1X2=0}.
设α1,α2,…,αt为AX=0的一个基础解系,β不是AX=0的解,证明:β,β+α1,β+α2,…,β+αt线性无关.
设3阶矩阵A的特征值为一1,1,1,对应的特征向量分别为α1=(1,一1,1)T,α2=(1,0,一1)T,α3=(1,2,一4)T,求A100.
随机试题
有一患者长期饮酒,而后出现肝区疼痛,该病人肝脏的主要病变可能是哪一项
某机械制造企业为了进一步夯实安全基础,提升企业的安全管理水平,把创建安全生产标准化作为推动安全生产工作的抓手,并紧密结合企业实际情况,狠抓安全培训教育,组织制定安全培训教育制度及培训大纲。明确了培训的内容、时间和培训的主管部门,并按照培训计划开展培训,对培
下列选项中,属于贷款业务按照贷款方式的不同分类的是()。
甲、乙公司均为增值税一般纳税企业,适用的增值税税率为17%。甲公司欠乙公司购货款100万元,由于甲公司财务发生困难,短期内不能支付货款。经协商,甲公司以其生产的一批产品和一台设备偿还债务。该产品的实际成本40万元,已计提存货跌价准备5万元,该产品的市场销售
下图漫画中官员的做法主要错在()。
一首歌中唱道:“我们唱着东方红,当家作主站起来……”这反映的历史事件是()。
设有幂级数。求:该幂级数的导数在收敛区间内的和函数。
VisualBasic根据计算机访问文件的方式将文件分成三类,其中不包括______。
【B1】【B9】
Trytocoversomeinterestingpointsabouttheguestspeakers,suchassomeoftheirpastachievementsorcredentials.
最新回复
(
0
)