首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设曲线(0<a<4)与x轴、y轴所围成的图形绕x轴旋转一周所得立体体积为V1(a),绕y轴旋转所得立体体积为V2(a),问a为何值时,V1(a)+V2(a)最大,并求最大值.
设曲线(0<a<4)与x轴、y轴所围成的图形绕x轴旋转一周所得立体体积为V1(a),绕y轴旋转所得立体体积为V2(a),问a为何值时,V1(a)+V2(a)最大,并求最大值.
admin
2019-09-04
37
问题
设曲线
(0<a<4)与x轴、y轴所围成的图形绕x轴旋转一周所得立体体积为V
1
(a),绕y轴旋转所得立体体积为V
2
(a),问a为何值时,V
1
(a)+V
2
(a)最大,并求最大值.
选项
答案
曲线与x轴和y轴的交点坐标分别为(a,0),(0,b),其中b=4-a.曲线可化为 y=[*],对任意的[x,x+dx][*][0,a], dV
2
=2πx.ydx=2πx[*] 于是V
2
=2π∫
0
a
x.[*]a
2
b,根据对称性,有V
1
=[*]ab
2
. 于是V(a)=V
1
(a)+V
2
(a)=[*]a(4-a). 令V’(a)=[*](4-2a)=0[*]a=2,又V’’(2)<0,所以a=2时,两体积之和最大,且最大值为V(2)=[*]
解析
转载请注明原文地址:https://kaotiyun.com/show/x4J4777K
0
考研数学三
相关试题推荐
做半径为R的球的外切正圆锥,问此圆锥的高h取何值,其体积最小,最小值是多少?
设矩阵矩阵B=(kE+A)2,其中k为实数,E为单位矩阵.求对角矩阵A,使B与A相似;并求k为何值时,B为正定矩阵.
设λ1、λn分别为n阶实对称矩阵的最小、最大特征值,X1,Xn分别为对应于λ1、λn的特征向量,记f(X)=XTAX/XTX,X∈Rn,X≠0求二元函数f(x,y)=(x2+y2≠0)的最大值及最大值点.
设A是n阶可逆方阵,将A的第i行与第j行对换后所得的矩阵记为B.求AB-1.
设区域D1为以(0,0),(1,1),(0,),(,1)为顶点的四边形,D2为以(,0),(1,0),(1,)为顶点的三角形,而D由D1与D2合并而成.随机变量(X,Y)在D上服从均匀分布,求关于X、Y的边缘密度fX(χ)、fY(y).
求二元函数z=f(x,y)=x2y(4一x—y)在由直线x+y=6,x轴和y轴所围成的闭区域D上的极值、最大值与最小值.
设二维随机变量(X,Y)在区域D={(x,y)|1≤x≤e2,0≤y≤}上服从均匀分布,则(X,Y)的关于X的边缘概率密度fX(x)在点x=e处的值为________.
由曲线y=x3,y=0及x=1所围图形绕x轴旋转一周得到的旋转体的体积为________.
随机试题
动态监测系统要根据油藏地质特点和开发要求,确定监测内容、井数比例和取资料密度,确保动态监测资料的()。
蛔虫最常见并发症是
关于皮肤移植下列说法错误的是
与乳汁生成和分泌有直接关系的激素是()。
下列各项税金中,可能列入“主营业务税金及附加”科目核算的有()。
个人贷款与公司贷款是商业银行按照()划分的。
甲以个人名义向乙独资设立的腾飞公司借款8万元,借期2年,不久,甲与丙登记结婚,将借款8万元用于购买新房和家电,婚后1年,甲与丙协议离婚,未对债务的偿还作出约定。下列哪一项是正确的?()
以下人员,不得担任公司高级管理人员的是( )。
2,5,11,23,47,()
The19th-centuryBritishAristocracyTheBritisharistocracyhadalwaysbeeninvolvedinindustrialization,especiallyinth
最新回复
(
0
)