首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A是3阶矩阵,α1,α2,α3为线性无关的向量,且Aα1=α1+2α2+3α3,Aα2=一α2+α3,Aα3=2α2, 则A11+A22+A33=___________________.
设A是3阶矩阵,α1,α2,α3为线性无关的向量,且Aα1=α1+2α2+3α3,Aα2=一α2+α3,Aα3=2α2, 则A11+A22+A33=___________________.
admin
2021-03-10
34
问题
设A是3阶矩阵,α
1
,α
2
,α
3
为线性无关的向量,且Aα
1
=α
1
+2α
2
+3α
3
,Aα
2
=一α
2
+α
3
,Aα
3
=2α
2
, 则A
11
+A
22
+A
33
=___________________.
选项
答案
-3.
解析
令P=(α
1
,α
2
,α
3
),则AP=P
,或P
-1
AP=
,即A~B.
由|λE-B|=
=(λ+2)(λ-1)
2
=0
得A的特征值为λ
1
=-2,λ
2
=λ
3
=1,再由|A|=-2得A
*
的特征值为
故A
11
+A
22
+A
33
=tr(A
*
)=1-2-2=-3.
转载请注明原文地址:https://kaotiyun.com/show/x784777K
0
考研数学二
相关试题推荐
[2012年]求函数f(x,y)=x的极值.
一容器的内侧是由图中曲线绕y轴旋转一周而成的曲面,该曲线由x2+y1=2y(y≥1/2)与x2+y2=1(y≤1/2)连接而成。求容器的容积;
[2010年]设A=,存在正交矩阵Q使得QTAQ为对角矩阵,若Q的第1列为[1,2,1]T,求a,Q.
设三阶方阵A=[A1,A2,A3],其中Ai(i=1,2,3)为三维列向量,且A的行列式|A|=-2,则行列式|-A1-2A2,2A2+3A3,-3A3+2A1|=_______.
设f(x)是奇函数,且对一切x有f(x+2)=f(x)+f(2),又f(1)=a,a为常数,n为整数,则f(n)=_____________.
设f(χ)在[a,b]上有定义,M>0且对任意的χ,y∈[a,b],有|f(χ)-f(y)|≤M|χ-y|k.(1)证明:当k>0时,f(χ)在[a,b]上连续;(2)证明:当k>1时,f(χ)≡常数.
设f(x)在(0,+∞)内一阶连续可微,且对x∈(0,+∞)满足x∫01f(xt)dt=2∫0xf(t)dt+xf(x)+x3,又f(1)=0,求f(x).
设f(x)在(0,+∞)内一阶连续可微,且对∈(0,+∞)满足+xf(x)+x3,又f(1)=0,求f(x).
随机试题
以下关于肺功能描述错误的是
小儿常常宜患呼吸系统、消化系统的疾病,不合理的选用儿科中成药常会导致病情加重,进而延误病情,而合理选择儿科中成药则能迅速起到治疗疾病的目的。具有健脾开胃,促进消化,增强食欲功能的是
甲将1套房屋出卖给乙,已经移转占有,没有办理房屋所有权移转登记。现甲死亡,该房屋由其子丙继承。丙在继承房屋后又将该房屋出卖给丁,并办理了房屋所有权移转登记。下列哪些表述是正确的?(2012年试卷三第56题)
A城市有一宗国有建设用地,占地面积为1000/m2,土地使用者于2001年以行政划拨方式取得,后于2004年8月1日通过补办出让手续取得该宗地50年期的土地使用权,同时建成一栋总建筑面积为2500/m2的办公楼,现全部用于出租。A城市房地产市场比较发育
根据()的不同,可将加密技术分为对称加密体制、非对称加密体制和不可加密体制。
领购发票的单位和个人应当凭()核准的种类、数量以及购票方式,向主管税务机关领购发票。
根据国际货币基金组织对货币层次的划分,M1=M0+()。
2011年,陕西农村沼气池产气总量同比增长()。
一个理想的脑功能成像系统需要满足的要求有
[A]park[B]music[C]library[D]taxi[E]worker[F]subjects[G]hotelTherearemanykindsofflowersin
最新回复
(
0
)