首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
An×n=(α1,α2,…,αn),Bn×n=(α1+α2,α2+α3,…,αn+α1),当r(A)=n时,方程组BX=0是否有非零解?
An×n=(α1,α2,…,αn),Bn×n=(α1+α2,α2+α3,…,αn+α1),当r(A)=n时,方程组BX=0是否有非零解?
admin
2019-07-19
22
问题
A
n×n
=(α
1
,α
2
,…,α
n
),B
n×n
=(α
1
+α
2
,α
2
+α
3
,…,α
n
+α
1
),当r(A)=n时,方程组BX=0是否有非零解?
选项
答案
方法一: B=(α
1
+α
2
,α
2
+α
3
,…,α
n
+α
1
)=(α
1
,α
2
,…,α
n
)[*], 由r(A)=n可知|A|≠0,而|B|= |A|[*]=|A|[1+(一1)
n+1
], 当n为奇数时,|B|≠0,方程组BX=0只有零解; 当n为偶数时,|B|=0,方程组BX=0有非零解. 方法二 BX=0[*]x
1
(α
1
+α
2
)+x
2
(α
2
+α
3
)+…+x
n
(α
n
+α
1
)=0 [*](x
1
+x
n
)α
1
+(x
1
+x
2
)α
2
+…+(x
n-1
+x
n
)α
n
=0, 因为α
1
,α
2
,…,α
n
线性无关, 所以[*]=1+(一1)
n+1
, 当n为奇数时,|B|≠0,方程组BX=0只有零解; 当n为偶数时,|B|=0,方程组BX=0有非零解.
解析
转载请注明原文地址:https://kaotiyun.com/show/x8c4777K
0
考研数学一
相关试题推荐
设有幂级数(1)求该幂级数的收敛域;(2)证明此幂级数满足微分方程y"一y=一1;(3)求此幂级数的和函数:
在曲线y=e-x(x≥0)上求一点,使过该点的切线与两坐标轴所围平面图形的面积最大,并求出最大面积.
设随机变量X服从正态分布N(μ,σ2),则随σ的增大,概率P{|X-μ|<σ}应该()
设直线y=ax(0<a<1)与抛物线y=x2所围封闭图形的面积记为S,它们与直线x=1所围成的图形面积为S2。试求a的值,使S1+S2最小,并求此最小面积。
假设一批产品的不合格品数与合格品数之比为R(未知常数).现在按还原抽样方式随意抽取的n件中发现k件不合格品.试求R的最大似然估计值.
设X1,X2,…,Xn是来自标准正态总体N(0,1)的简单随机样本,其均值和方差分别为和S2,记.试求:E(T)与E(T2)的值.
飞机在机场开始滑行着陆,在着陆时刻已失去垂直速度,水平速度为v0(m/s),飞机与地面的摩擦系数为μ,且飞机运动时所受空气的阻力与速度的平方成正比,在水平方向的比例系数为kx(kg.s2/m2),在垂直方向的比例系数为ky(kg.s2/m2).设飞机的质量
已知函数试求其单调区间、极值以及函数图形的凹凸区间、拐点和渐近线,并画出函数的图形。
随机试题
触点过热是接触器主触点的常见故障。
患者,男,37岁。发热微恶寒,咽痛,口干,溲赤,鼻塞流脓涕,舌质偏红苔薄黄,脉数有力。用药宜首选
日本脱口秀表演家金语楼曾获多项专利。有一种在打火机上装一个小抽屉代替烟灰缸的创意,在某次创意比赛中获得了大奖,备受推崇。比赛结束后,东京的一家打火机制造厂商将此创意进一步开发成产品推向市场,结果销路并不理想。以下哪项如果为真,能最好地解释上面的矛盾?(
()是指人民警察应具备的政治思想、业务能力、文化水平、心理特征、身体状况诸方面条件的总和。
人脑加工、储存和提取信息的能力称为——能力。
技术变革是如何影响市场全球化和生产全球化的?如果没有这些技术变革,生产全球化和市场的全球化可能实现吗?
甲,乙两人各进,行3次射击,甲恰好比乙多击中目标2次的概率是(1)甲每次击中目标的概率为;(2)乙每次击中目标的概率为
已知表达式--a中的"--"是作为成员函数重载的运算符,则与--a等效的运算符函数调用形式为
如果我们要使报表的标题在每一页上都显示,那么应该设置
DearSamantha,IamwritinginregardstoMimiStone.IhadtheprivilegeofmeetingherduringmylastvisittotheSingaporeB
最新回复
(
0
)