首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(z)在[1,+∞)内可导,f’(x)<0且f(x)=a>0,令an=f(k)-|f(x)dx.证明:{an}收敛且0≤≤f(1).
设f(z)在[1,+∞)内可导,f’(x)<0且f(x)=a>0,令an=f(k)-|f(x)dx.证明:{an}收敛且0≤≤f(1).
admin
2019-11-25
32
问题
设f(z)在[1,+∞)内可导,f’(x)<0且
f(x)=a>0,令a
n
=
f(k)-
|f(x)dx.证明:{a
n
}收敛且0≤
≤f(1).
选项
答案
因为f’(x)<0,所以f(x)单调减少. 又因为a
n+1
-a
n
=f(n+1)-[*]f(x)dx=f(n+1)-f(ξ)≤0(ξ∈[n,n+1]),所以{a
n
}单调减少. 因为a
n
=[*][f(k)-f(x)]dx+f(n),而[*][f(k)-f(x)]dx≥0(k=1,2,…,n-1)且[*]f(x)=a>0,所以存在X>0,当x>X时,f(x)>0. 由f(x)单调递减得f(x)>0(x∈[1,+∞)),故a
n
≥f(n)>0,所以[*]a
n
存在. 因为a
n
=f(1)+[f(2)-[*]f(x)dx]+…+[f(n)-[*]f(x)dx], 因为a
n
=f(1)+[f(2)-[*]f(x)dx]+…+[f(n)-[*]f(x)dx], 而f(k)-[*]f(x)dx≤0(k=2,3,…,n),所以a
n
≤f(1),从而0≤[*]a
n
≤f(1).
解析
转载请注明原文地址:https://kaotiyun.com/show/y6D4777K
0
考研数学三
相关试题推荐
设函数f(x)可导,且曲线y=f(x)在点(x0,f(x0))处的切线与直线y=2一x垂直,则当△x→0时,该函数在x=x0处的微分dy是()
证明:当x>0时,不等式成立.
设f(x)在x0处n阶可导,且f(m)(x0)=0(m=1,2,…,n一1),f(n)(x0)≠0(n>2).证明:当n为奇数时,(x0,f(x0))为拐点.
(1)设平面区域D={(x,y)|0≤x≤2,0≤y≤2),求二重积分(2)设f(x,y)在上述D上连续,且[*证明:存在点(ξ,η)∈D使|f(ξ,η)|≥1.
设函数f(y)的反函数f-1(x)及f’[f-1(x)]与f”[f-1(x)]都存在,且f-1[f-1(x)]≠0.证明:
设函数f(x)=,则()
设向量组(I)与向量组(Ⅱ),若(I)可由(Ⅱ)线性表示,且r(I)=r(Ⅱ)=r.证明:(I)与(Ⅱ)等价.
已知α1=[1,一1,1]T,α2=[1,t,一1]T,α3=[t,1,2]T,β=[4,t2,一4]T,若β可由α1,α2,α3线性表示,且表示法不唯一,求t及β的表达式.
微分方程xdy—ydx=ydy的通解是______.
求下列一阶常系数线性差分方程的通解:4yt+1+16yt=20;
随机试题
深Ⅱ度烧伤局部损伤的深度是
男孩,3岁,常有排尿中断现象,并伴有疼痛,患儿常用手搓拉阴茎,改变体位后,能够恢复排尿。结石的主要成分最可能的是
某施工单位,在工程建设过程中野蛮施工、违章作业、致使军事通信光缆被挖断,造成重大损失,对此行为应当如何处理?( )
你和领导一起到某地开展调查,你因堵车迟到了,领导和其他部门同志非常生气,你怎么办?
取缔非法校车的初衷是为了保障学生的生命安全,但我们也应当注意到.如果没有得力的配套措施,单纯采用这种取缔手段并不一定能够降低事故率:非法校车取缔之后,风险变得分散了,媒体也不会集中报道了,但并不意味着上下学的安全隐患消失,在没有正规校车的情况下,离家较远的
设aibi≠0(i=1,2,…,n),则矩阵的秩为_______.
下列哪一(些)项属于询问一应答式协议 Ⅰ.私钥密码技术 Ⅱ.公钥密码技术
假定有以下循环结构DoUrntil条件循环体Loop则正确的描述是()。
对于循环队列,下列叙述中正确的是()。
CellPhoneLetsYourSecretsOutYourcellphoneholdssecretsaboutyou.Besidesthenamesandnumbersthatyou’veprogram
最新回复
(
0
)