首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A=(α1,α2,…,αn)是s×n阶矩阵,b是s维非零列向量,以下选项中不能作为Ax=b有解的充要条件是( )。
设A=(α1,α2,…,αn)是s×n阶矩阵,b是s维非零列向量,以下选项中不能作为Ax=b有解的充要条件是( )。
admin
2022-03-14
75
问题
设A=(α
1
,α
2
,…,α
n
)是s×n阶矩阵,b是s维非零列向量,以下选项中不能作为Ax=b有解的充要条件是( )。
选项
A、b可以由向量组α
1
,α
2
,…,α
n
线性表示
B、向量组α
1
,α
2
,…,α
n
与向量组α
1
,α
2
,…,α
n
,b等价
C、矩阵方程AX=(A,b)有解
D、向量组α
1
,α
2
,…,α
n
,b线性相关
答案
D
解析
①Ax=b有解→存在不全为零的常数k
1
,k
2
,…,k
n
,使得b=k
1
α
1
+k
2
α
2
+…+k
n
α
n
,即b可以由向量组α
1
,α
2
,…,α
n
线性表示。
②Ax=b有解→b可以由向量组α
1
,α
2
,…,α
n
线性表示→向量组α
1
,α
2
,…,α
n
,b可以由向量组α
1
,α
2
,…,α
n
线性表示。
又因为向量组α
1
,α
2
,…,α
n
可以由向量组α
1
,α
2
,…,α
n
,b线性表示,所以Ax=b有解→向量组α
1
,α
2
,…,α
n
与向量组α
1
,α
2
,…,α
n
,b等价。
③若Ax=b有解,则可设Aξ=b,于是A(E,ξ)=(A,b),即AX=(A,b)有解,反过来,若AX=(A,b)有解,可设AB=(A,b),于是取ξ为B的最后一列,这Aξ=b,即Ax=b有解。
④由①可知,当线性方程组Ax=b有解时,向量组α
1
,α
2
,…,α
n
,b线性相关,但反之未必。例如,取s=n=2,A=(α
1
,α
2
)=
,则向量组α
1
,α
2
,b线性相关,但Ax=b无解。
综上可知,应选D。
转载请注明原文地址:https://kaotiyun.com/show/ybR4777K
0
考研数学三
相关试题推荐
设f(x,y)为连续函数,则等于()
设连续型随机变量X1与X2相互独立且方差均存在,X1与X2的概率密度分别为f1(x)与f2(x),随机变Y1的概率密度为[f1(y)+f2(y)],随机变量Y2=(X1+X2),则().
设函数讨论函数f(x)的间断点,其结论为
设随机变量(X,Y)的概率密度f(x,y)满足f(x,y)=f(一x,y),且ρXY存在,则ρXY=()
设是从总体X中取出的简单随机样本X1,…,Xn的样本均值,则是μ的矩估计,如果
已知r(A)=r1,且方程组AX=α有解,r(B)=r2,且BY=β无解,设A=[α1,α2,…,αn],B=[β1,β2,…,βn],且r(α1,α1,…,αn,α,β1,β2,…,βn,β)=r,则()
设随机变量X服从正态分布N(μ,42),Y-N(μ,52);记p1=P{X≤μ一4},p2=P{Y≥μ+5},则()
若事件A和B同时出现的概率P(AB)=0,则()
设随机变量序列X1,X2,…,Xn,…相互独立,则根据辛钦大数定律,依概率收敛于其数学期望,只要{Xn:n≥1}()
从装有1个白球,2个黑球的罐子里有放回地取球,记这样连续取5次得样本X1,X2,X3,X4,X5。记Y=X1+X2+…+X5,求:,S2分别为样本X1,X2,…,X5的均值与方差).
随机试题
A.Na+B.K+C.HCO3-D.Ca2+E.Cl-神经细胞膜在静息时通透性最大的离子是
日本药品和药事监督管理层次分为中央级、都道府县级和市町村级三级。权力集中于中央政府厚生省药务局,地方政府为贯彻执行部门。()
当上市公司发行在外的普通股股数和实现的净利润一定时,下列各项中,影响市盈率的是()。
2013年8月5日,甲基金会取得一项捐款100万元,捐赠人限定将该款项用于购置化疗设备。2014年1月15日,甲基金会购入设备,价值80万元。2014年2月20日,经与捐赠人协商,捐赠人同意将剩余的款项20万元留归甲基金会自主使用。甲基金会下列处理中正确的
清初“四王”中,取得“熟不甜,生不涩,淡而厚,实而清”的收获的画家是()。
你所在辖区内的一家房地产开发商和业主因为交房和合同上不一致发生冲突,要你去处理,请问你会如何处理?
Inrecentyearsmanycountriesoftheworldhavebeenfacedwiththeproblemofhowtomaketheirworkersmoreproductive.Some
4/π
下列描述中正确的是
Itwasreally_____ofyoutoremembermybirthday.(2011-73)
最新回复
(
0
)