首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设3阶实对称矩阵A的各行元素之和都为3,向量α1=(-1,2,-1)T,α2=(0,-1,1)T都是齐次线性方程组AX=0的解. (1)求A的特征值和特征向量. (2)求作正交矩阵Q和对角矩阵∧,使得
设3阶实对称矩阵A的各行元素之和都为3,向量α1=(-1,2,-1)T,α2=(0,-1,1)T都是齐次线性方程组AX=0的解. (1)求A的特征值和特征向量. (2)求作正交矩阵Q和对角矩阵∧,使得
admin
2021-11-09
50
问题
设3阶实对称矩阵A的各行元素之和都为3,向量α
1
=(-1,2,-1)
T
,α
2
=(0,-1,1)
T
都是齐次线性方程组AX=0的解.
(1)求A的特征值和特征向量.
(2)求作正交矩阵Q和对角矩阵∧,使得
选项
答案
(1)条件说明A(1,1,1)
T
=(3,3,3)
T
,即α
0
=(1,1,1)
T
是A的特征向量,特征值为3.又α
1
,α
2
都是AX=0的解说明它们也都是A的特征向量,特征值为0.由于α
1
,α
2
线性无关,特征值0的重数大于1.于是A的特征值为3,0,0. 属于3的特征向量:cα
0
,c≠0. 属于0的特征向量:c
1
α
1
+c
2
α
2
;c
1
,c
2
不都为0. (2)将α
0
单位化,得η
0
=[*] 对α
1
,α
2
作施密特正交化,得 [*] 作Q=(η
1
,η
2
,η
3
),则Q是正交矩阵,并且 Q
T
AQ=Q
-1
AQ=[*] (3)建立矩阵方程A(α
0
,α
1
,α
2
)=(3α
0
,0,0),用初等变换法求解: 得A=[*] 由Q
-1
AQ=[*] 得A=Q[*]Q
-1
. 于是A-(3/2)E=Q[*]Q
-1
. [A-(3/2)E]
6
=(3/2)
6
E.
解析
转载请注明原文地址:https://kaotiyun.com/show/ycy4777K
0
考研数学二
相关试题推荐
设单位质点在水平面内作直线运动,初速度v|t=0=v0.已知阻力与速度成正比(比例系数为1),问t为多少时此质点的速度为?并求到此时刻该质点所经过的路程.
已知,其中f(x)二阶可微.求f(0),fˊ(0),f"(0)及
设f(x)在[-1,1]上可导,f(x)在x=0处二阶可导,且f’(0)=0,f"(0)=4,求.
设f(x)在(-1,1)内二阶连续可导,且f"(x)≠0,证明:
以y=C1ex+ex(C2cosx+C3sinx)为通解的三阶常系数齐次线性微分方程为________.
设二元函数f(x,y)=|x-y|Φ(x,y),其中Φ(x,y)在点(0,0)处的某邻域内连续,证明:函数f(x,y)在点(0,0)处可微的充分必要条件是Φ(0,0)=0.
设A=(a1,a2,...,am)其中a1,a2,...,am是n维列向量,若对于任意不全为零的常数k1,k2,...,km,皆有k1a1+k2a2,...+kmam≠0,则()。
设,求A的特征值与特征向量,判断矩阵A是否可对角化,若可对角化,求出可逆矩阵P及对角阵。
计算积分,其中D是由x=0,x2+y2=4,y=所围成的封闭区域。
二元函数f(x,y)在点(xo,yo)处的下面4条性质:(I)连续;(Ⅱ)两个偏导数连续;(Ⅲ)可微;(Ⅳ)两个偏导数存在,则().
随机试题
社会经济的发展推动教育事业的发展,而教育事业的发展又反过来促进经济进一步发展。从因果关系来看,这属于
下列属于炎症性肠病的是()。
血液保存液ACD的抗凝作用原理主要是试剂能结合
A.膀胱B.肾脏C.前尿道D.输尿管E.膀胱三角区初始血尿提示出血部位在
女,50岁。绝经3年,阴道流血5天。查体:子宫稍大稍软。行分段诊刮,官腔内膜及宫颈刮出物病理结果为腺癌。本例最适宜的手术方式是
A.泛制法B.塑制法C.滴制法D.模压法E.配研法
整体面层施工后,养护时间不应小于()d;抗压强度应达到5MPa后,方准上人行走。
采用复合标底确定评标基准价,其计算用到的数据有()。
A、Englishlanguageproficiency.B、Differentculturalpractices.C、Differentnegotiationtasks.D、TheAmericanizedstyle.B本题考查在J
RivalsNoMore—Howtohelpsiblings(兄弟,姐妹)becomepals"Ididn’tstartit.Shehitmefirst.""Heruine
最新回复
(
0
)