首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设4元齐次线性方程组(Ⅰ)为,又已知某齐次线性方程组(Ⅱ)的通解为志k1(0,1,1,0)T+k2(-1,2,2,1)T. (1)求线性方程组(Ⅰ)的基础解系; (2)问线性方程组(Ⅰ)和(Ⅱ)是否有非零公共解?若有,则求出所有的非零公共解
设4元齐次线性方程组(Ⅰ)为,又已知某齐次线性方程组(Ⅱ)的通解为志k1(0,1,1,0)T+k2(-1,2,2,1)T. (1)求线性方程组(Ⅰ)的基础解系; (2)问线性方程组(Ⅰ)和(Ⅱ)是否有非零公共解?若有,则求出所有的非零公共解
admin
2017-06-26
54
问题
设4元齐次线性方程组(Ⅰ)为
,又已知某齐次线性方程组(Ⅱ)的通解为志k
1
(0,1,1,0)
T
+k
2
(-1,2,2,1)
T
.
(1)求线性方程组(Ⅰ)的基础解系;
(2)问线性方程组(Ⅰ)和(Ⅱ)是否有非零公共解?若有,则求出所有的非零公共解;若没有,则说明理由.
选项
答案
(1)(0,0,1,0)
T
,(-1,1,0,1)
T
. (2)有非零公共解,所有非零公共解为c(-1,1,1,1)
T
(c为任意非零常数).将(Ⅱ)的通解代入方程组(Ⅰ),有[*],解得k
1
=-k
2
,当k
1
=-k
2
≠0时,则向量k
1
(0,1,1,0)
T
+k
2
(-1,2,2,1)
T
=k
2
[(0,-1,-1,0)
T
+(-1,2,2,1)
T
]=k
2
(-1,1,1,1)
T
满足方程组(Ⅰ)(显然是(Ⅱ)的解),故方程组(Ⅰ)与(Ⅱ)有非零公共解,所有非零公共解是c(-1,1,1,1)
T
(c为任意非零常数).
解析
转载请注明原文地址:https://kaotiyun.com/show/yjH4777K
0
考研数学三
相关试题推荐
设三阶实对称矩阵A的各行元素之和均为3,向量a1=(-1,2,-1)T=(0,-1,1)T是线性方程组Ax=0的两个解;(Ⅰ)求A的特征值与特征向量;(Ⅱ)求正交矩阵Q和对角矩阵A,使得QTAQ=L;(Ⅲ)求A及(A-(3/2)E)6,其中E为三阶
设f(x),g(x)在[-a,a]上连续,g(x)为偶函数,且f(x)满足条件f(x)+f(-x)=A(A为常数).(Ⅰ)证明∫-aaf(x)g(x)dx=A∫0ag(x)dx;(Ⅱ)利用(Ⅰ)的结论计算定积分∫π/2-π/2|sinx|arctane
a=一5是齐次方程组有非零解的
设函数.其中n=1,2,3,…为任意自然数,f(x)为[0,+∞)上正值连续函数.求证:Fn(x)在(0,+∞)存在唯一零点x0;
计算二重积分其中D是由直线y=x,y=1,x=0所围成的平面区域.
已知实二次型f(x1,x2,x3)=a(x11+x22+x32)+4x1x2+4x1x3+4x2x3经正交变换x=Py可化成标准形f=6y12,则a=_______.
行列式
设二次型f(x1,x2,x3)=x12+x22+x32一2x1x2一2x1x4+2ax2x3(a<0)通过正交变换化为标准形2y12+2y22+by32.(I)求常数a,b;(Ⅱ)求正交变换矩阵;(Ⅲ)当|X|=1时,求二次
设y(x)是方程y(4)一y"=0的解,且当x→0时,y(x)是x的3阶无穷小,求y(x).
随机试题
关于保证模板安装施工安全基本要求的说法,正确的有()。
ゆっくりながら________、確実に進歩しているから、最後は誰よりも早く目標に到達できるだろう。
A.左侧卧位B.膝胸位C.截石位D.蹲位E.弯腰前俯位肛门视诊时最常用的体位是
多系统器官功能衰竭的第一靶器官是
自行车停车设施设计时,应该采用()作为设计标准车。
发明专利权、实用新型专利权和外观设计专利权的法律保护期限分别为()。
不确定型决策是指决策方案目标面临多种外在的环境,决策结果虽不能确定,但容易预测环境变化的态势。()
作为网络“九大乱象”之一,跟帖评论乱象________信息传播秩序、破坏网络舆论生态,网民对此________。填入画横线部分最恰当的一项是:
WhatdidSelouswanttobewhenhewasyoung?
Nobodyinthisofficesings______thanJerry.
最新回复
(
0
)