首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A,B是两个n阶实对称矩阵,并且A正定.证明: (1)存在可逆矩阵P,使得PTAP,PTBP都是对角矩阵; (2)当|ε|充分小时,A+εB仍是正定矩阵.
设A,B是两个n阶实对称矩阵,并且A正定.证明: (1)存在可逆矩阵P,使得PTAP,PTBP都是对角矩阵; (2)当|ε|充分小时,A+εB仍是正定矩阵.
admin
2019-05-11
31
问题
设A,B是两个n阶实对称矩阵,并且A正定.证明:
(1)存在可逆矩阵P,使得P
T
AP,P
T
BP都是对角矩阵;
(2)当|ε|充分小时,A+εB仍是正定矩阵.
选项
答案
(1)因为A正定,所以存在实可逆矩阵P
1
,使得P
1
T
AP
1
=E.作B
1
=P
1
T
BP
1
,则B
1
仍是实对称矩阵,从而存在正交矩阵Q,使得Q
T
B
1
Q是对角矩阵.令P=P
1
Q,则 P
T
AP=Q
T
P
1
T
AP
1
Q=E,P
T
BP=Q
T
P
1
T
BP
1
Q=Q
T
B
1
Q.因此P即所求. (2)设对(1)中求得的可逆矩阵P,对角矩阵P
T
BP对角线上的元素依次为λ
1
,λ
3
,…,λ
n
,记 M=max{|λ
1
|,|λ
2
|,…,|λ
n
|}. 则当|ε|<1/M时,E+εP
T
BP仍是实对角矩阵,且对角线上元素1+ελ
i
>0,i=1,2,…,n.于是E+εP
T
BP正定,P
T
(A+εB)P=E+εP
T
BP,因此A+εB也正定.
解析
转载请注明原文地址:https://kaotiyun.com/show/z8V4777K
0
考研数学二
相关试题推荐
设f′(χ)在[0,1]上连续且|f′(χ)|≤M.证明:
设f(χ)在[0,1]上连续,f(0)=0,∫01f(χ)dχ=0.证明:存在ξ∈(0,1),使得∫0ξ=f(χ)dχ=ξf(ξ).
当χ>0时,证明:
设g(χ)在[a,b]上连续,且f(χ)在[a,b]上满足f〞(χ)+g(χ)f′(χ)-f(χ)=0,又f(a)=f(b)=0,证明:f(χ)在[a,b]上恒为零.
A,B为n阶矩阵且r(A)+r(B)<n.证明:方程组AX=0与BX=0有公共的非零解.
设A为实对称矩阵,且A的特征值都大于零.证明:A为正定矩阵.
设A=,求A的特征值,并证明A不可以对角化.
设向量组α1,α2,…,αs为齐次线性方程组AX=0的一个基础解系,Aβ≠0.证明:齐次线性方程组BY=0只有零解,其中B=(β,β+α1,…,β+αs).
微分方程y"-4y’=x2+cos2x的特解形式为().
设一元函数f(x)有下列四条性质:①f(x)在[a,b]连续;②f(x)在[a,b]可积;③f(x)在[a,b]存在原函数;④f(x)在[a,b]可导。若用“P=>Q”表示可由性质P推出性质Q,则有()
随机试题
据中国国家统计局发布的数据,2011年中国国内生产总值达471564亿元,比上年增长()
不属于水火共制法的是
某建设单位有一宾馆大楼的装饰装修和设备安装工程,经公开招标投标确定了由某建筑装饰装修工程公司和设备安装公司承包工程施工,并签订了施工承包合同。合同价为1600万元,工期为130天。合同规定:业主与承包方“每提前或延误工期一天,按合同价的万分之二进行奖罚”,
2016年年初某企业拥有房产的原值共计3000万元,其中厂房原值共计2600万元,厂办幼儿园房产原值300万元,独立的地下工业用仓库原价100万元。该企业2016年发生如下业务:(1)6月30日将原值为300万元的厂房出租,合同载明年租金24万元,每年年
银行业金融机构在反洗钱方面应承担的义务有()。
音域
下列属于法律关系的是哪一项?()
TodayI’dliketotalkaboutwhathelpspeoplesuccessfullyintegrateintoanewculture.Whereasthereasonsformigrationare
Itissoeasytoearnrewards!Awiderangeofpartnerswhereveryougo!Tomaketravelingeveneasier,AirFranceoffer
Anewbookissuretobediscussed,and【B1】,atcollegesthisfall.ThebookiscalledMyFreshmanYear:WhataProfessorLearne
最新回复
(
0
)