首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设函数f(u)具有二阶连续导数,z=f(excos y)满足=(4z+excos y)e2x.若f((0)=0,f’(0)=0,求f(u)的表达式.
设函数f(u)具有二阶连续导数,z=f(excos y)满足=(4z+excos y)e2x.若f((0)=0,f’(0)=0,求f(u)的表达式.
admin
2022-09-08
50
问题
设函数f(u)具有二阶连续导数,z=f(e
x
cos y)满足
=(4z+e
x
cos y)e
2x
.若f((0)=0,f’(0)=0,求f(u)的表达式.
选项
答案
由z=f(e
x
cos y)得[*]=f’(e
x
cos y)·(-e
x
sin y), [*]=f”(e
x
cos y)·e
x
cos y·e
x
cos y+f’(e
x
cos y)·e
x
cos y =f”(e
x
cos y)·e
2x
cos
2
y+f’(e
x
cos y)·e
x
cos y, [*]=f”(e
x
cos y)·(-e
x
sin y)·(-e
x
sin y)+f’(e
x
cos y)·(-e
x
cos y)=f”(e
x
cos y)·e
2x
sin
2
y-f’(e
2x
cos y)·e
2x
cos y. 由[*]=(4z+e
x
cos y)e
2x
,代入得 f”(e
x
cos y)·e
2x
=[4f(e
x
cos y)+e
x
cos y]e
2x
, 即 f”(e
x
cos y)-4f(e
x
cos y)=e
x
cos y, 令e
x
cos y=u,得f”(u)-4f(u)=u. 特征方程为λ
2
-4=0,解得λ=±2,得齐次方程通解[*]=C
1
e
2u
+C
2
e
-2u
. 设特解y
*
=au+b,代入方程得a=-1/4,b=0,得特解y
*
=[*]。 则原方程通解为y=f(u)=C
1
e
2u
+C
2
e
-2u
-[*]。 由f(0)=0,f’(0)=0,得C
1
=1/16,C
2
=-1/16,则 [*]。
解析
转载请注明原文地址:https://kaotiyun.com/show/zIe4777K
0
考研数学一
相关试题推荐
判定级数的敛散性,若收敛,则求其和.
设则下列级数中,一定收敛的是().
曲线C的方程为y=f(x),点(3,2)是它的一个拐点,直线l1与l2分别是曲线C在点(0,0)与(3,2)处的切线,其交点为(2,4).设函数f(x)具有三阶连续导数,计算定积分
当k为何值时,反常积分收敛;当k为何值时,这个反常积分发散;又当k为何值时,这个反常积分取得最小值?
积分
计算曲线积分I=,其中L是平面x+y+z=2与柱面|x|+|y|=1的交线,从z轴正向看去,L为逆时针方向.
设A为m×n矩阵,则齐次线性方程组Ax=0仅有零解的充分条件是().
(数学一)已知α1=(1,2,1)T,α2=(2,3,3)T,α31=(3,7,1)T与β1=(2.1,1)T,β2=(5,2,2)T,β3=(1,3,4)T是R2的两组基,则在这两组基底下有相同的坐标为__________.
设连续型随机变量X的分布函数F(x)严格递增,y~U(0,1),则Z=F-1(Y)的分布函数()
设A(2,2),B(1,1),F是从点A到点B的线段下方的一条光滑定向曲线y=y(x),且它与围成的面积为2,又φ(y)有连续导数,求曲线积分
随机试题
关于脑垂体的叙述,正确的是
不合法的原始凭证是指原始凭证表述的事项与实际经济业务不符。()
虽然小明的期末测验成绩不高,但与期中相比有所提高,老师仍颁给他“学习进步奖”。这种评价属于()。
设函数=f(x)=+|x-a|(a>0).若f(3)<5,求a的取值范围.
某地级市人大制定《推进生态文明城市建设条例》,行使了地方立法权。()
行使管制权的主体是乡级以上人民政府的公安机关。( )
设圆盘x2+y2≤2ax内各点处的面密度与该点到坐标原点的距离成正比,试求该圆盘的重心.
(1)将考生文件夹下WIN文件夹中的文件WORK更名为PLAY。(2)在考生文件夹下创建文件夹GOOD,并设置属性为隐藏。(3)在考生文件夹下WIN文件夹中新建一个文件夹BOOK。(4)将考生文件夹下DAY文件夹中的文件WORK.DOC移动到考生文件
PersonalDetailsFamilyname:PetersAddress:7【L4】_______Crescent,MountLawleyPhonenumber:
Don’tletvacationsorbusinesstravelsideline(使退出)yourexerciseroutine.Physicalactivityisagreatwayto【C1】______stress
最新回复
(
0
)