设函数f(u)具有二阶连续导数,z=f(excos y)满足=(4z+excos y)e2x.若f((0)=0,f’(0)=0,求f(u)的表达式.

admin2022-09-08  35

问题 设函数f(u)具有二阶连续导数,z=f(excos y)满足=(4z+excos y)e2x.若f((0)=0,f’(0)=0,求f(u)的表达式.

选项

答案由z=f(excos y)得[*]=f’(excos y)·(-exsin y),   [*]=f”(excos y)·excos y·excos y+f’(excos y)·excos y   =f”(excos y)·e2xcos2y+f’(excos y)·excos y,   [*]=f”(excos y)·(-exsin y)·(-exsin y)+f’(excos y)·(-excos y)=f”(excos y)·e2xsin2y-f’(e2xcos y)·e2xcos y.   由[*]=(4z+excos y)e2x,代入得    f”(excos y)·e2x=[4f(excos y)+excos y]e2x,   即 f”(excos y)-4f(excos y)=excos y,   令excos y=u,得f”(u)-4f(u)=u.   特征方程为λ2-4=0,解得λ=±2,得齐次方程通解[*]=C1 e2u+C2e-2u.   设特解y*=au+b,代入方程得a=-1/4,b=0,得特解y*=[*]。   则原方程通解为y=f(u)=C1e2u+C2e-2u-[*]。   由f(0)=0,f’(0)=0,得C1=1/16,C2=-1/16,则   [*]。

解析
转载请注明原文地址:https://kaotiyun.com/show/zIe4777K
0

最新回复(0)