首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设矩阵是满秩的,则直线与直线( )
设矩阵是满秩的,则直线与直线( )
admin
2019-01-14
61
问题
设矩阵
是满秩的,则直线
与直线
( )
选项
A、相交于一点.
B、重合.
C、平行但不重合.
D、异面.
答案
A
解析
设L
1
:
,题设矩阵
是满秩的,则由行列式的性质,可知
故向量(a
1
-b
2
,b
1
-b
2
,c
1
-c
2
)与(a
2
-a
3
,b
2
-b
3
,c
2
-c
3
)线性无关,否则由线性相关的定义知,一定存在不全为零的数走k
1
,k
2
,使得
k
1
(a
1
-a
2
,b
1
-b
2
,c
1
-c
2
)+k
2
(a
2
-a
3
,b
2
-b
3
,c
2
-c
3
)=0,
这样上面行列式经过初等行变换值应为零,产生矛盾.
(a
1
-a
2
,b
1
-b
2
,c
1
-c
2
)与(a-a,b-b,c-c)分别为L
1
,L
2
的方向向量,由方向向量线性相关,两直线平行,可知L
1
,L
2
不平行.又由
得
可见L
1
,L
2
均过点(a
1
-a
2
+a
3
,b
1
-b
2
+b
3
,c
1
-c
2
+c
3
),故两直线相交于一点,选A.
转载请注明原文地址:https://kaotiyun.com/show/zjM4777K
0
考研数学一
相关试题推荐
设R4的三个基(Ⅰ)、(Ⅱ)、(Ⅲ)分别为求向量α=ξ1-ξ2+ξ3在基(Ⅱ)下的坐标;
设n阶矩阵求r(A).
已知齐次线性方程组(Ⅰ)的基础解系为ξ1=[1,0,1,1]T,ξ2=[2,1,0,-1]T,ξ3=[0,2,1,-1]T,添加两个方程后组成齐次方程组(Ⅱ),求(Ⅱ)的基础解系.
设f(x)在[0,1]上连续,且满足∫01f(x)dx=0,∫01xf(x)dx=0,求证:f(x)在(0,1)内至少存在两个零点.
求曲线积分I=∫L2yzdx+(2z一z2)dy+(y2+2xy+3y)dz,其中L为闭曲线从原点向L看去,L沿顺时针方向.
设二维随机变量(X,Y)的分布律为(I)求常数a;(Ⅱ)求两个边缘分布律;(Ⅲ)说明X与Y是否独立;(Ⅳ)求3X+4Y的分布律;(V)求P{X+Y>1}.
下列命题正确的是().
设y=f(x)为区间[0,1]上的非负连续函数.证明存在c∈(0,1),使得在区间[0,c]上以f(c)为高的矩形面积等于区间[c,1]上以u=f(x)为曲边的曲边梯形的面积;
设则在实数域上与A合同的矩阵为
设f(x)是连续函数,F(x)是f(x)的原函数,则().
随机试题
维持蛋白质二级结构的主要化学键是:
A.230nmB.240~260nmC.262~295nmD.305~389nmE.400mn以上
建设工程施工合同分析由()负责。
()受聘于CPO,主要负责帮助CPO挑选CTA,监视CTA的交易活动,控制风险,以及在CTA之间分配基金。
年度终了,除“未分配利润”明细科目外,“利润分配”科目下的其他明细科目应当无余额。()
ArichAmericanwenttoParisandboughtapicturepaintedbyaFrenchartist.TheAmericanthoughtthepicturetobeveryfine
"Helooksnormal."That’swhateverybodysayswhenItellthemmysonwasjustdiagnosedasautism(孤独症).Theyallsayitwithout
下列对于SQL的嵌套查询排序的描述中,说法正确的是()。
A、Itwasoriginallybuiltin1940s.B、ItwasusedbytheSmithfamily.C、Itgotitsnamefromthebuilder.D、Ithasbeenbuilti
Ofthe143nativelanguagesinMexico,60areatriskofbeingsilencedforever,linguistssay.ButMexicoisn’ttheonlycountr
最新回复
(
0
)