首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知齐次线性方程组(Ⅰ)的基础解系为ξ1=[1,0,1,1]T,ξ2=[2,1,0,-1]T,ξ3=[0,2,1,-1]T,添加两个方程 后组成齐次方程组(Ⅱ),求(Ⅱ)的基础解系.
已知齐次线性方程组(Ⅰ)的基础解系为ξ1=[1,0,1,1]T,ξ2=[2,1,0,-1]T,ξ3=[0,2,1,-1]T,添加两个方程 后组成齐次方程组(Ⅱ),求(Ⅱ)的基础解系.
admin
2017-06-14
68
问题
已知齐次线性方程组(Ⅰ)的基础解系为ξ
1
=[1,0,1,1]
T
,ξ
2
=[2,1,0,-1]
T
,ξ
3
=[0,2,1,-1]
T
,添加两个方程
后组成齐次方程组(Ⅱ),求(Ⅱ)的基础解系.
选项
答案
方程组(Ⅰ)的通解为k
1
ξ
1
+ k
2
ξ
2
+ k
3
ξ
3
= [*] 代入添加的两个方程,得 [*] 得η
1
=[2,-3,0]
T
,η
2
=[0,1,-1]
T
, 故方程组(Ⅱ)的基础解系为 α
1
=2ξ
1
—3ξ
2
=[-4,-3,2,5]
T
,α
2
=ξ
2
-ξ
3
=[2,-1,-1,0]
T
.
解析
转载请注明原文地址:https://kaotiyun.com/show/lpu4777K
0
考研数学一
相关试题推荐
非齐次线性方程组Ax=b中未知量个数为n,方程个数为m,系数矩阵A的秩为r,则
设A,B为满足AB=0的任意两个非零矩阵,则必有
设对(I)中的任意向量ξ2,ξ3,证明ξ1,ξ2,ξ3线性无关.
已知非齐次线性方程组有3个线性无关的解.证明方程组系数矩阵A的秩r(A)=2;
设向量α1,α2,...,αt是齐次方程组Ax=0的一个基础解系,向量β不是方程组Ax=0的解即Aβ≠0.试证明:向量组β,β+α1,β+α2,…,β+αt线性无关.
设奇函数f(x)在[-1,1]上具有2个阶导数,且f(x)=1。证明:存在ξ∈(0,1),使得f’(ξ)=1;
设f(x)在[a,b]上连续,在(a,b)内二阶可导,f(a)=f(b)=0,∫abf(x)dx=0.证明:(Ⅰ)存在ξi∈(a,b),使得f(ξi)=f’’(ξi)(i=1,2);(Ⅱ)存在η∈(a,b),使得f(η)=f’’(η).
(2000年试题,十)设矩阵A的伴随矩阵且ABA-1=BA-1+3E,其中E为4阶单位矩阵,求矩阵B.
随机试题
有关慢性肾盂肾炎,下列哪项是错误的
该病例最可能诊断为上述病例应首先采取
患者,韩某。因骑电瓶车时不幸滑倒,导致左侧髋关节位置疼痛难忍,经120医师检查后,拟行髋关节检查。下列有关髋关节前后位摄影的叙述,正确的是
患者,女,20岁。近半月来自觉心慌、口干、尿频、出汗多,特别怕热,大便次数多,而且易怒。如果这位患者T3、T4升高,TSH明显低于正常值,最可能的诊断是
以下关于呼吸衰竭的概念错误的是
通过测验来评定学生的学业成绩是常用的评价方法。在一个测验中,衡量它达到测验目的的程度,即是否测出了它所要测量的东西的指标是()。
任何人都没有吃过普吉岛上的任何水果,所以无法知道普吉岛上任何水果的口味。为了合乎逻辑的推出上述结论,需要假设下面哪项为前提?()
应收账款周转率提高则意味着企业()。
JustasDarwindiscoveredthelawofdevelopmentoforganicnature,soMarxdiscoveredthelawofdevelopmentofhumanhistory:
科学技术革命作为社会动力体系中的一种动力,它是()
最新回复
(
0
)