首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设正项数列{an}单调递减,且(—1)nan发散,试问级数是否收敛?并说明理由。
设正项数列{an}单调递减,且(—1)nan发散,试问级数是否收敛?并说明理由。
admin
2017-01-21
64
问题
设正项数列{a
n
}单调递减,且
(—1)
n
a
n
发散,试问级数
是否收敛?并说明理由。
选项
答案
由于正项数列{a
n
}单调递减,因此极限[*]a
n
存在,将极限记为a,则有a
n
≥a,且a≥0.又因为[*](—1)
n
a
n
是发散的,根据交错级数的莱布尼茨判别法可知a>0(否则级数[*](—1)
n
a
n
是收敛的)。已知正项级数{a
n
}单调递减,因此 [*] 而[*]收敛,因此根据比较判别法可知,级数[*]也收敛。
解析
转载请注明原文地址:https://kaotiyun.com/show/01H4777K
0
考研数学三
相关试题推荐
设函数f(x),g(x)在[a,b]上连续,在(a,b)内二阶可导存在相等的最大值,又f(a)=g(a),f(b)=g(b),证明:(I)存在η∈(a,b),使得f(η)=g(η);(Ⅱ)存在ξ∈(a,b),使得f〞(ξ)=g〞(ξ).
[*]
设f(x)在[0,1]上连续,且0≤f(x)≤1,试证在[0,1]内至少存在一个ξ,使f(ξ)=ξ.
设X1,X2,…,Xn是总体为Ⅳ(μ,σ2)的简单随机样本,记(I)证明T是μ2的无偏估计量;(Ⅱ)当μ=0,σ=1时,求D(T).
设则g(x)在区间(0,2)内().
考虑二元函数的下面4条性质(I)f(x,y)在点(xo,yo)处连续(Ⅱ)f(x,y)在点(xo,yo)处的两个偏导数连续(Ⅲ)f(x,y)在点(xo,yo)处可微(Ⅳ)f(x,y)在点(xo,yo)处的两个偏导数存在
设总体X服从参数为2的指数分布,X1,X2,…,Xn为来自总体X的简单随机样本,则当n→∞时,YnXi2依概率收敛于=__________。
若4阶矩阵A与B相似,矩阵A的特征值为1/2,1/3,1/4,1/5,则行列式|B-1-E|=_________.
计算曲面积分,∑为:
设f(x)=xsinx+cosx,下列命题中正确的是().
随机试题
Ifyou’reheadingforyournearestbranchofWaterstones,thebiggestbookretailerintheUK,insearchoftheDuchessofSusse
促进神经系统发育最重要的激素是
某种公猪,80kg,不宜留作种用,欲对其行去势术,打开总鞘膜后暴露精索,摘除睾丸的最佳方法是将精索
病人王某,40岁,因驾车发生交通事故而入院。体检:昏迷,瞳孔大小不等,BP60/40mmHg,P130次/分,R30.次/分,且费力、不规则,需作进一步诊断。病人24小时液体维持,若下午3时换上500ml药液,每分钟滴速50滴,预计何时完成
如果一项租赁在实质上没有转移与租赁资产所有权有关的全部风险和报酬,那么该项租赁应认定为经营租赁。()
如果各种投放增加的比例10%,产出增加的比例是8%,说明了该企业规模报酬递减。()
主张课程内容的组织以儿童活动为中心,提倡“做中学”的课程理论是()。
北宋画家郭熙在《笔法记》中提出“三远法”,高度概括了山水画的取景方法。()
班级越大,内部越容易形成各种非正式小群体。()
A、Itwasexciting.B、Itwasamusing.C、Itwassurprising.D、Itwasquiteboring.B
最新回复
(
0
)