首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
天体力学中的开普勒(Kepler)方程为x=qsinx+a,其中a和q为常数,q满足0<q<1.任取x0,构造选代公式 xn+1=qsinxn+a,n=0,1,2,…. 试证:{xn}收敛,且其极限为开普勒方程的解.
天体力学中的开普勒(Kepler)方程为x=qsinx+a,其中a和q为常数,q满足0<q<1.任取x0,构造选代公式 xn+1=qsinxn+a,n=0,1,2,…. 试证:{xn}收敛,且其极限为开普勒方程的解.
admin
2022-10-31
64
问题
天体力学中的开普勒(Kepler)方程为x=qsinx+a,其中a和q为常数,q满足0<q<1.任取x
0
,构造选代公式
x
n+1
=qsinx
n
+a,n=0,1,2,….
试证:{x
n
}收敛,且其极限为开普勒方程的解.
选项
答案
由选代公式 x
n+1
=qsinx
n
+a.n=0,1,2,… 可得 |x
2
-x
1
|=q|sinx
1
-sinx
0
|=[*]≤q|x
1
-x
0
|; 同理可得 |x
3
-x
2
|≤q|x
2
-x
1
|≤q
2
|x
1
-x
0
; 由数学归纳法,有 |x
n+1
-x
n
|≤q|x
n
-x
n-1
|≤…≤q
n
|x
1
-x
0
|. 由此,对任何p∈N
+
,又有 |x
n+p
-x
n
|≤|x
n+p
-x
n+p-1
|+…+|x
n+1
-x
n
|≤(q
n+p-1
+…+q
n
)|x
1
-x
0
| [*] 因为0<q<1,所以[*].于是对[*]ε>0,[*]N∈N
+
.使得当n>N时,对一切p∈N
+
,有 |x
n+p
-x
n
|≤q
n
[*]<ε, 即{x
n
}满足柯西收敛准则的条件,故存在极限[*]x
n
=1. 因为|sinx
n
-sinl|≤|x
n
-l|,从而[*]sinx
n
=sinl.对选代公式x
n+1
=qsinx
n
+a两边取n→+∞的极限,得l=sinl+a,即l是开普勒方程的解.
解析
转载请注明原文地址:https://kaotiyun.com/show/0SgD777K
0
考研数学一
相关试题推荐
普通话中舌面、后、高、圆唇元音是()。
条件变体和自由变体的区别何在?
某县扶贫办副主任甲,利用职务将一项造价20万的扶贫工程定价40万,对外招标。甲冒用A公司的营业执照、安全许可证等证明材料,参与该项目招标,又通过职权运作使“A公司”中标。之后,甲以“A公司”的名义将工程交给村民乙承建,并在工程完工验收后,利用职权将40万元
甲与乙结婚,女儿丙三岁时,甲因医疗事故死亡,获得60万元赔款。甲生前留有遗书,载明其死亡后的全部财产由其母丁继承。经查,甲与乙婚后除共同购买了一套住房外,另有20万元存款。对此,下列说法正确的是()。
学者们已经证明:效率与公平是对矛盾统一体。实现共同富裕需要经历若干阶段性过程,不可能一蹴而就,但我们又不能不在每一个阶段为实现共同富裕做具体的准备。以下哪项从上述题干中推出最为恰当?
科学家:已经证明,采用新耕作方法可以使一些经营管理良好的农场在不明显降低产量、甚至在提高产量的前提下,减少化肥、杀虫剂和抗生素的使用量。批评家:并非如此。你们选择的农场是使用这些新方法最有可能取得成功的农场。为什么不提那些尝试了新方法却最终失败了的农场呢?
方程4xy-4x2-y2-m的一个因式为(1-2x+y),则m=().
已知数列{an)中,a1=1,an=,则S100=()。
求下列函数极限
将函数f(x)=1/(x2-x)展开为(x+1)的收敛域为________.
随机试题
下列除哪项外,均属于现病史的内容
A.氯喹B.奎宁C.伯氨喹D.乙胺嘧啶E.甲氟喹可用于治疗阿米巴肝脓肿的药是
按我国现行投资构成,下列费用中不属于基本预备费的是()。
每个建设项目都应编制(),这是一个项目的组织设计文件的一部分。
政府投资有( )之分。
阅读材料,回答问题。有老师在讲解“我国的宗教政策”这一课程时,这样导入:幻灯片展示有关宗教的热点新闻:2008年3月10日,达赖在照例举行的纪念“西藏抗暴起义49周年”活动上称“中国政府过去对境内藏人的镇压更是变本加厉”“造成人权横遭践踏,宗教信仰自
注意的初级生理机制是()
静态路由广泛应用于哪些网络连接?______。
在下列模式中,能够给出数据库物理存储结构与物理存取方法的是()。
Acoupleoftrucksandthreecranesarescheduledtoarriveattheconstructionsitenolaterthanthe______week.
最新回复
(
0
)