首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设ξ1,ξ2是非齐次方程组AX=β的两个不同的解,η1,η2为它的导出组AX=0的一个基础解系,则它的通解为( )
设ξ1,ξ2是非齐次方程组AX=β的两个不同的解,η1,η2为它的导出组AX=0的一个基础解系,则它的通解为( )
admin
2018-06-27
67
问题
设ξ
1
,ξ
2
是非齐次方程组AX=β的两个不同的解,η
1
,η
2
为它的导出组AX=0的一个基础解系,则它的通解为( )
选项
A、k
1
η
1
+k
2
η
2
+(ξ
1
-ξ
2
)/2.
B、k
1
η
1
+k
2
(η
1
-η
2
)+(ξ
1
+ξ
2
)/2.
C、k
1
η
1
+k
2
(ξ
1
-ξ
2
)+(ξ
1
-ξ
2
)/2.
D、k
1
η
1
+k
2
(ξ
1
-ξ
2
)+(ξ
1
+ξ
2
)/2.
答案
B
解析
先看特解.(ξ
1
-ξ
2
)/2是AX=0的解,不是AX=β的解,从而(A),(C)都不对.(ξ
1
+ξ
2
)/2是AX=β的解.
在看导出组的基础解系.在(B)中,η
1
,η
1
-η
2
是AX=0的两个解,并且由η
1
,η
2
线性无关容易得出它们也无关,从而可作出AX=0的基础解系,(B)正确.
在(D)中,虽然η
1
,ξ
1
-ξ
2
都是AX=0的解,但不知道它们是否无关,因此(D)作为一般性结论是不对的.
转载请注明原文地址:https://kaotiyun.com/show/0ak4777K
0
考研数学二
相关试题推荐
已知矩阵只有一个线性无关的特征向量,那么矩阵A的特征向量是__________.
设u=f(2x+3y,z),其中f具有二阶连续偏导数,而z=z(x,y)是由方程=1确定并满足z(0,0)=1的函数,求结果用fi’(0,1),fij’’(0,1)表示(i,j=1,2)
已知向量β=(α1,α2,α3,α4)T可以由α1=(1,0,0,1)T,α2=(1,1,0,0)T,α3=(0,2,一1,一3)T,α4=(0,0,3,3)T线性表出.求α1,α2,α3,α4应满足的条件;
已知4元齐次线性方程组的解全是4元方程(ii)x1+x2+x3=0的解,求齐次方程(ii)的解.
设有一容器由平面z=0,z=1及介于它们之间的曲面S所围成.过z轴上点(0,0,z)(0≤z≤1)作垂直于z轴的平面与该立体相截得水平截面D(z),它是半径的圆面.若以每秒v0体积单位的均匀速度往该容器注水,并假设开始时容器是空的.求水表面上升速度最大
设A是3阶矩阵,有特征值λ1=λ2=一2,λ3=2,对应的特征向量分别是ξ1=[1,一2,2]T,ξ2=[2,一5,3]T,ξ3=[2,1,5]T,β=[3,11,11]T.证明:β是A100的特征向量,并求对应的特征值.
设f(x)在(一∞,+∞)上存在二阶导数,f’(0)0.证明:若f(x)恰有两个零点,则此两零点必反号.
设D为曲线y=x3与直线y=x所围成的两块区域,计算
设线性方程组已知(1,-1,1,-1)T是该方程组的一个解.试求:该方程组满足x2=x3的全部解.
一厂商经营两个工厂,生产同一种产品在同一市场销售,两个工厂的成本函数分别为C1=3Q12+2Q1+6,C2=2Q22+2Q2+4而价格函数为P=74-6Q,Q=Q1+Q2厂商追求最大利润.试确定每个工厂的产出.
随机试题
齿轮传动机构装配后的跑合,是为了提高接触精度,降低噪声。( )
从进入WindowsXP到退出WindowsXP前,剪贴板一直处于工作状态。()
A.血小板量异常B.血小板质异常C.凝血功能异常D.血中抗凝物质过多E.血管壁功能异常过敏性紫癜的发生是由于
直线回归分析中,反映回归平方和在总平方相中所占比重的统计量是
患者,男性,16岁,右颌下区反复肿胀多次,两天前再次发作,病程进展快,开口受限。X线片显示右下颌角处沿颌骨长轴单囊影像,右下智齿受压,位于下颌下缘。该患者的诊断最有可能是
张某的父亲突然原因不明的死于家中,张某到当地公安机关报案,公安机关立即派员到现场。如果本案要立案侦查,那么首先应当查明:()
单位冲激信号δ(t)是:
流动资产的实体性贬值可能会出现在( )。
甲公司自行研发一项新技术,累计发生研究开发支出800万元,其中符合资本化条件的支出为500万元。研发成功后向国家专利局提出专利权申请并获得批准,实际发生注册登记费8万元;为使用该项新技术发生的有关人员培训费为6万元。不考虑其他因素,甲公司该项无形资产的入账
Weoftenpassonlittlebitsofinformationtoourchildren,notknowingiftheyaretrue,andonlybecausetheywere(1)______
最新回复
(
0
)