首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设非齐次线性方程组Ax=b的系数矩阵的秩为r,η1,…,ηn—r+1,是它的n—r+1个线性无关的解。试证它的任一解可表示为x=kη1η1+…+kn—r+1+ηn—r—1,其中k1+…+kn—r+1=1。
设非齐次线性方程组Ax=b的系数矩阵的秩为r,η1,…,ηn—r+1,是它的n—r+1个线性无关的解。试证它的任一解可表示为x=kη1η1+…+kn—r+1+ηn—r—1,其中k1+…+kn—r+1=1。
admin
2017-01-21
38
问题
设非齐次线性方程组Ax=b的系数矩阵的秩为r,η
1
,…,η
n—r+1
,是它的n—r+1个线性无关的解。试证它的任一解可表示为x=kη
1
η
1
+…+k
n—r+1
+η
n—r—1
,其中k
1
+…+k
n—r+1
=1。
选项
答案
设x为Ax=b的任一解,由题设知η
1
,η
2
,…,η
n—r+1
线性无关且均为Ax=b的解。 取ξ
1
=η
2
—η
1
,ξ
2
=η
3
—η
1
,…,ξ
n—r
=η
n—r+1
—η
1
,根据线性方程组解的结构,它们均为对应齐次方程Ax=0的解。 下面用反证法证: 设ξ
1
,ξ
2
,…,ξ
n—r
线性相关,则存在不全为零的数l
1
,l
2
,…,l
n—r
使得 l
1
ξ
1
+l
2
ξ
2
+…+l
n—r
ξ
n—r
=0, 即 l
1
(η
2
—η
1
)+l
2
(η
3
—η
1
)+…+l
n—r
(η
n—r+1
—η
1
)=0, 也即 一(l
1
+l
2
+…+l
n—r
)η
1
+l
1
η
2
+l
2
η
3
+…+l
n—r
η
n—r+1
=0。 由η
1
,η
2
,…,η
n—r+1
线性无关知 一(l
1
+l
2
+…+l
n—r
)=l
1
=l
2
=…=l
n—r
=0, 这与l
1
,l
2
,…,l
n—r
不全为零矛盾,故假设不成立。因此ξ
1
,ξ
2
,…,ξ
n—r
线性无关,是Ax=0的基础解系。 由于x,η
1
均为Ax=b的解,所以x—η
1
为Ax=0的解,因此z—η
1
可由ξ
1
,ξ
2
,…,ξ
n—r
线性表示,设 x—η
1
=k
2
ξ
1
+k
3
ξ
2
+…+k
n—r+1
ξ
n—r
=k
2
(η
2
—η
1
)+k
3
(η
3
—η
1
)+…+k
n—r+1
(η
n—r+1
—η
1
), 则x=η
1
(1—k
2
—k
3
—…—k
n—r+1
)+k
2
η
2
+k
3
η
3
+…+k
n—r+1
η
n—r+1
, 令k
1
=1—k
2
—k
3
—…—k
n—r+1
,则k
1
+k
2
+k
3
+…+k
n—r+1
=1,从而 x=k
1
η
1
+k
2
η
2
+…+k
n—r+1
η
n—r+1
恒成立。
解析
转载请注明原文地址:https://kaotiyun.com/show/12H4777K
0
考研数学三
相关试题推荐
互不相容事件与对立事件的区别何在?说出下列各对事件之间的关系:“20件产品全是合格品”与“20件产品中恰有一件是废品”;
设函数f(x)在(-∞,+∞)内单调有界,{xn}为数列,下列命题正确的是
设随机变量X和Y,相互独立,且均服从参数为1的指数分布,V=min(X,Y),U=max(X,Y)求(1)随机变量V的概率密度fv(v);(2)E(U+V).
已知函数f(x)满足方程f〞(x)+fˊ(x)-2f(x)=0及fˊ(x)+f(x)=2ex,(1)求f(x)的表达式;(2)求曲线的拐点.
设n阶矩阵A非奇异(n≥2),A*是矩阵A的伴随矩阵,则().
设向量组α1,α2,α3线性无关,问常数a,b,c满足什么条件时,aα1-α2,bα2-α3,cα3-α1线性相关?
当x→0时,f(x)=x-sinax与g(x)=x2ln(1-bx)是等价无穷小,则a=______,b=______.
二次型f(x1,x2,x3)=x12+4x22+3x32-4x1x2+2x1x3+8x2x3的秩等于()。
下列函数在指定区间上是否存在最大值和最小值?如有,求出它的值,并说明是最大值还是最小值:
随机试题
最可能的诊断对此患儿,最合适的治疗措施是
A.雌激素B.孕激素C.雄激素D.垂体生乳素E.促黑素细胞激素
男,45岁,患肝硬化腹水半年,大量利尿后意识不清1天住院。查血钾2.3mmol/L,血钠135mmol/L,血氯化物102mmol/L,血氨140mmol/L。首要的治疗是应用
有关前列腺颗粒细胞的描述,错误的是()
实验中夹闭家兔双侧颈总动脉时可出现
女,46岁。患慢性肝炎10余年。半年前曾因早孕行人工流产,现要求避孕指导。患者最恰当的避孕措施是
有人说:“教师的素质高低取决于其知识的丰富程度。”()
无论是科技因素、心理因素,还是其他种种因素,对于幸福感的产生均不是必然的,同时也是不可度量的。那种有了科技、满足了个人追求就必然会幸福的想法是站不住脚的。同样,他们对于幸福感而言,其作用也并非总是正向的。应该说,在幸福感来源问题上,科技、心理或是其他诸如价
Inthesecondhalfofeachyear,manypowerfulstormsareborninthetropicalAtlanticandCaribbeanseas.Of【C1】______,onlya
Knowledgemaybeacquiredthroughconversation,watchingtelevisionortravelling,butthedeepestandmostconsistentwayisth
最新回复
(
0
)