首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设函数f(x)在[0,1]上连续,在(0,1)上可导,且f(0)=0,f(1)=1,证明:对于任意正数a,b,总存在x1,x2∈(0,1),使得=a+b成立。
设函数f(x)在[0,1]上连续,在(0,1)上可导,且f(0)=0,f(1)=1,证明:对于任意正数a,b,总存在x1,x2∈(0,1),使得=a+b成立。
admin
2017-01-16
80
问题
设函数f(x)在[0,1]上连续,在(0,1)上可导,且f(0)=0,f(1)=1,证明:对于任意正数a,b,总存在x
1
,x
2
∈(0,1),使得
=a+b成立。
选项
答案
只需证明[*]=1即可。 因a,b均为正数,所以有0<[*]<1。 又因为f(0)=0,f(1)=1,所以f(0)<[*]<f(1),则由连续函数的介值定理可知,必存在ξ∈(0,1),使得f(ξ)=[*]成立,于是有 [*] 在[0,ξ]与[ξ,1]上分别使用拉格朗日中值定理,得 f(ξ)-f(0)=f’(x
1
)ξ,x
1
∈(0,ξ), f(1)-f(ξ)=f’(x
2
)(1-ξ),x
2
∈(ξ,1), [*]
解析
转载请注明原文地址:https://kaotiyun.com/show/13u4777K
0
考研数学一
相关试题推荐
A、 B、 C、 D、 A
设A是m×n矩阵,B是n×m矩阵,则齐次线性方程组ABX=O().
设函数f(u)可导,y=f(x2)当自变量x在x=-1处取得增量△x=-0.1时,相应的函数增量△y的线性主部为0.1,则fˊ(1)=().
四名乒乓球运动员——1,2,3,4参加单打比赛,在第一轮中,1与2比赛,3与4比赛.然后第一轮中的两名胜者相互比赛决出冠亚军,两名败者也相互比赛决出第三名和第四名.于是比赛的一种最终可能结果可以记作1324(表示1胜2,3胜4,然后1胜3,2胜4).设
一串钥匙,共有10把,其中有4把能打开门,因开门者忘记哪些能打开门,便逐把试开,求下列事件的概率:第3把钥匙才打开门
设有一半径为R的球体,P0是球面一定点,球体上任意一点的密度与该点到P0的距离平方成正比(比例常数k>0),求球体的重心的位置.
设函数f(x)具有二阶连续导数,且f(x)>0,f’(0)=0,则函数z=f(x)lnf(y)在点(0,0)处取得极小值的一个充分条件是
设随机变量X服从正态分布N(0,1),对给定的α∈(0,1),数uα满足P{X>uα}=α,若P{丨X丨
已知,二次型f(x1,x2,x3)=xT(ATA)x的秩为2.(1)求实数a的值;(2)求正交变换x=Qy将f化为标准形.
设有齐次线性方程组Ax=0和Bx=0,其中A,B均为m×n矩阵,现有4个命题:①若Ax=0的解均是Bx=0的解,则秩(A)≥秩(B):②若秩(A)≥秩(B),则Ax=0的解均是Bx=0的解;③若Ax=0与Bx=0同解,则秩(A)=秩(B);④若秩(
随机试题
内映像疫苗是指
近代中国历史上第一个全国性的资产阶级革命政党是()
A、宣肺散寒B、辛凉解表,宣肺清热C、补肾纳气D、温阳利水,泻壅平喘E、疏散风寒,宣肺解表风寒闭肺喘证的治法是
《中华人民共和国建筑法》规定,建设单位应当向建筑施工企业提供与施工现场相关的地下管线资料,( )应当采取措施加以保证。
素质教育的总目标是()。
凡是教学效果好的教师,都会有意识或无意识地对学生的学习风格进行认真的研究。()
WhyisValentine’sDay,aholidaydedicatedtothesweetbloomoflove,celebratedinacoldmonthmoresuitedtohatsandglove
刘军看中了一套100平方千米的江景住房,房价是8000/平米,房价是80万,按照规定,申请个人住房贷款必须首付30%,即刘军必须有240000万房款用于首付,余下560000元房款靠贷款支持。其中.公积金贷款为300000元,余下房款有商业银行个人住房贷款
以下无理方程有实数根的是().
变更控制是对(3)的变更进行标识、文档化、批准或拒绝,并控制。
最新回复
(
0
)