首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设有齐次线性方程组Ax=0和Bx=0,其中A,B均为m×n矩阵,现有4个命题: ①若Ax=0的解均是Bx=0的解,则秩(A)≥秩(B): ②若秩(A)≥秩(B),则Ax=0的解均是Bx=0的解; ③若Ax=0与Bx=0同解,则秩(A)=秩(B); ④若秩(
设有齐次线性方程组Ax=0和Bx=0,其中A,B均为m×n矩阵,现有4个命题: ①若Ax=0的解均是Bx=0的解,则秩(A)≥秩(B): ②若秩(A)≥秩(B),则Ax=0的解均是Bx=0的解; ③若Ax=0与Bx=0同解,则秩(A)=秩(B); ④若秩(
admin
2013-04-04
58
问题
设有齐次线性方程组Ax=0和Bx=0,其中A,B均为m×n矩阵,现有4个命题:
①若Ax=0的解均是Bx=0的解,则秩(A)≥秩(B):
②若秩(A)≥秩(B),则Ax=0的解均是Bx=0的解;
③若Ax=0与Bx=0同解,则秩(A)=秩(B);
④若秩(A)=秩(B),则Ax=0与Bx=0同解.
以上命题中正确的是
选项
A、①②.
B、①③.
C、②④.
D、③④.
答案
B
解析
转载请注明原文地址:https://kaotiyun.com/show/gH54777K
0
考研数学一
相关试题推荐
(2005年)确定常数a,使向量组α1=(1,1,a)T,α2=(1,a,1)T,α3=(a,1,1)T可由向量组β1=(1,1,a)T,β2=(-2,a,4)T,β3=(-2,a,a)T线性表示,但向量组β1,β2,β3不能由向量组α1,α2,α3线性表
设函数f(x)在定义域内可导,y=f(x)的图形如图所示,则导函数y=f(x)的图形为_______.
(18年)设函数f(x)在[0,1]上二阶可导,且∫01f(x)dx=0,则
设(Ⅰ)求满足Aξ2=ξ1,A2ξ2=ξ1的所有向量ξ2,ξ3;(Ⅱ)对(Ⅰ)中的任意向量ξ2,ξ3,证明ξ1,ξ2,ξ3线性无关.
(2008年)设A为n阶非零矩阵,E为n阶单位矩阵,若A3=O,则【】
要使ξ1=[1,0,2]T,ξ2=[0,1,一1]T都是线性方程组AX=0的解,只要系数矩阵A为().
若二次型f(x1,x2,x3)=2x21+x22+x23+2x1x2+tx2x3正定,则t的取值范围是_______________.
互不相容事件与对立事件的区别何在?说出下列各对事件之间的关系:“20件产品全是合格品”与“20件产品中至多有一件是废品”.
互不相容事件与对立事件的区别何在?说出下列各对事件之间的关系:x>20与x
随机试题
确诊伤寒最有力的依据是()
下列不属于“元曲四大家”的是()
A.肾小球微小病变B.系膜增生性IgA肾小球肾炎C.膜性肾病D.毛细血管内增生性肾小球肾炎E.系膜毛细血管性肾小球肾炎
1.背景某项目经理部在负责某本地网线路一期工程施工时,与其运营商在各方面配合得都非常好,因此运营商希望该项目经理部帮助其完成一个存在较多质量问题的直埋光缆线路工程的整改工作,要求将其整改成一个合格工程。该直埋光缆线路工程存在的问题主要有:部分地段
建筑管道系统的试验类型主要分为()等试验。
埋地燃气管道,当设计输气压力为1.0MPa时,其气密性试验压力为()。
成本预算的编制方法中,()预算是指在按年分月编制预算的情况下,随着一个时期的过去,连续补充编制另一个时期,逐期向后滚动,并调整各期预算的过程。
将如图旋律片段改写成一首欢快的圆舞曲。要求:(1)符合圆舞曲体裁特征,可增减音符(包括休止符)、改变节奏。(2)在改写后的乐谱上标注速度、力度标记。
儿童已经明白成人不在视野范围内后还会继续出现,所以他们以母亲为安全保障.在新环境中探索、冒险,然后又回来寻求保护。此时幼儿的依恋属于()
下面哪种破译类型的破译难度最大?()
最新回复
(
0
)