首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在[0,1]上连续,(0,1)内可导,且f(0).f(1)>0,f(1)+∫01 f(x)dx=0.试证:至少存在一点ξ∈(0,1),使f’(ξ)=ξf(ξ).
设f(x)在[0,1]上连续,(0,1)内可导,且f(0).f(1)>0,f(1)+∫01 f(x)dx=0.试证:至少存在一点ξ∈(0,1),使f’(ξ)=ξf(ξ).
admin
2015-07-22
57
问题
设f(x)在[0,1]上连续,(0,1)内可导,且f(0).f(1)>0,f(1)+∫
0
1
f(x)dx=0.试证:至少存在一点ξ∈(0,1),使f’(ξ)=ξf(ξ).
选项
答案
令F(x)=[*] f(x),f(1)+∫
0
1
f(x)dx=f(1)+f(c)=0,c ∈(0,1). 由此可知f(c)≠0,否则f(1)=0,与题设f(0)f(1)>0矛盾,不妨设f(c)>0,则f(1)<0, f(0)<0. 由连续函数的零点定理知存在a∈(0,c),b ∈(c,1),使f(A)=f(b)=0,即F(A)=F(b),由罗尔定理可知,存在ξ∈(a,b),使F’(ξ)=0,即 [*] 故f’(ξ)=ξf(ξ).
解析
转载请注明原文地址:https://kaotiyun.com/show/15U4777K
0
考研数学三
相关试题推荐
2022年6月21日,教育部召开“教育这十年”系列新闻发布会,介绍党的十八大以来义务教育改革发展成就会上,教育部教育督导局局长田祖荫表示,随着县域义务教育基本均衡发展目标的全面实现,我们国家义务教育工作的重心已经由()转到了(
我国的烈士纪念日为每年的(),2021年是我国的第()个烈士纪念日。
人民政协是中国共产党领导的多党合作和政治协商的重要机构,是实行我国新型政党制度的重要政治形式和组织形式。70多年来,人民政协为党和国家事业发展凝心聚力,发挥了十分重要的作用,彰显了独特优势。人民政协的主题是
居里夫人在做盐铀实验时,发现了一种与盐铀放射性接近,但化学性质却完全不同的未知元素。后来,她通过大量矿石放射性的实验证明这种未知元素的存在,又经过三年多的实验,她终于提炼出了这种新元素并将它命名为“镭”。镭的发现引起科学和哲学的巨大变革,为人类探索原子世界
马克思把社会比喻为一座大厦,并把社会关系区分为经济基础和上层建筑两部分。经济基础是
记者在采访2015年诺贝尔生理学或医学奖的中国女药学家屠呦呦时问她:“你在小鼠和猴子身上测试了青蒿素,证明它是有效的之后,你自己也服了药。你害怕吗?”屠呦呦答:“我们担心药物是否安全。我和两位同事服了药,表明药不会死人。我认为这是我作为药物化学家的责任和工
设向量组α1,α2,α3线性无关,则下列向量组线性相关的是().
计算下列第二类曲面积分:
设线性无关的函数y1,y2与y3均为二阶非齐次线性方程的解,C1与C2是任意常数.则该非齐次线性方程的通解是().
随机试题
申请诉前财产保全可以向()人民法院申请。
重新点燃启蒙的火炬在告别20世纪而进入2l世纪之际,中国思想界对启蒙有截然相反的看法。有人历数启蒙的罪状,劝告知识分子放弃启蒙立场;有人则回顾启蒙被压倒的悲剧,希望在中国“重新点燃启蒙的火炬”。面对思想界的矛盾和种种困惑,有一个问题必须回答:今日
无尿的定义是指成年人24小时尿量少于
某患儿,高热2天,烦躁口渴。突然神昏,抽搐,舌质深红,舌苔黄糙,指纹青紫,治疗首选方剂为
某县从事母婴保健工作的医师胡某,违反《母婴保健法规定》,出具有关虚假证明而且情节严重。该县卫生局应依法给予胡某的处理是
下列应征收增值税的有( )。
中国的封建统治者通过科举考试选拔官吏,是从()开始的。
变量的一组取值如下:“11、14、9、8、19、16、12”,变量的中位数和平均数分别是( )。
设随机变量X与Y相互独立且分别服从正态分布N(μ,σ2)与N(μ,2σ2),其中σ是未知参数且σ>0,设Z=X—Y,(Ⅰ)求Z的概率密度f(z,σ2);(Ⅱ)设z1,z2,…,zn为来自总体Z的简单随机样本,求σ2的最大似然估计量.
Whyisitsodifficulttofallasleepwhenyouareovertired?Thereisnooneanswerthat【C1】______toeveryindividual.Butmany
最新回复
(
0
)