首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在[0,1]上连续,(0,1)内可导,且f(0).f(1)>0,f(1)+∫01 f(x)dx=0.试证:至少存在一点ξ∈(0,1),使f’(ξ)=ξf(ξ).
设f(x)在[0,1]上连续,(0,1)内可导,且f(0).f(1)>0,f(1)+∫01 f(x)dx=0.试证:至少存在一点ξ∈(0,1),使f’(ξ)=ξf(ξ).
admin
2015-07-22
49
问题
设f(x)在[0,1]上连续,(0,1)内可导,且f(0).f(1)>0,f(1)+∫
0
1
f(x)dx=0.试证:至少存在一点ξ∈(0,1),使f’(ξ)=ξf(ξ).
选项
答案
令F(x)=[*] f(x),f(1)+∫
0
1
f(x)dx=f(1)+f(c)=0,c ∈(0,1). 由此可知f(c)≠0,否则f(1)=0,与题设f(0)f(1)>0矛盾,不妨设f(c)>0,则f(1)<0, f(0)<0. 由连续函数的零点定理知存在a∈(0,c),b ∈(c,1),使f(A)=f(b)=0,即F(A)=F(b),由罗尔定理可知,存在ξ∈(a,b),使F’(ξ)=0,即 [*] 故f’(ξ)=ξf(ξ).
解析
转载请注明原文地址:https://kaotiyun.com/show/15U4777K
0
考研数学三
相关试题推荐
根据《中华人民共和国民法典》,国家实行社会主义市场经济,保障一切市场主体的()地位和发展权利。
中国共产党是中国工人阶级的先锋队,同时是中国人民和中华民族的先锋队,是中国特色社会主义事业的坚强领导()。
在同一社会制度内,时代的变化,主要衡量标准是发展水平质的提升,或者发生影响全局的重大变革。中国特色社会主义进人了新时代的重大判断,不是历史学的时代分期,也不是纯学术的概念,而是对我们党和国家事业发展到一个新阶段的标定,是对我国过去发展成就的充分肯定,也是对
若函数f(x)在(a,b)内具有二阶导数,且f(x1)=f(x2)=f(x3),其中a<x1<x2<x3<b,证明:在(x1,x3)内至少有一点ε,使得f〞(ε)=0.
判断下列级数的敛散性
设f(x,y)在区域D上连续,(xo,yo)是D的一个内点,Dr是以(xo,yo)为中心以r为半径的闭圆盘,试求极限
设∑与а∑满足斯托斯克斯定理中的条件,函数f(x,y,z)与g(x,y,z)具有连续二阶偏导数,f▽g表示向量▽g数乘f,即f▽g=f(gx,gy,gz)=(fgx,fgy,fgz)证明:
作适当的变换,计算下列二重积分:
用常数变易法求下列线性微分方程的通解:(1)y〞+y=secx,已知y1(x)=cosx是方程y〞+y=0的一个解;(2)(2x-1)y〞-(2x+1)yˊ+2y=0,已知y1(x)=ex是该方程的一个解;(3)x2y〞-2xyˊ+2y=2x3,已知
设函数f(x)在区间[0,1]上连续,在(0,1)内可导,且f(0)=f(1)=0,f(1/2)=1.试证:存在η∈(1/2,1),使f(η)=η;
随机试题
急诊输液室内分为_______和_______两部分。
简述董事、监事、高级管理人员的忠实义务。
酚醛树脂的成分中加入氢氧化钠的作用是
临床上诊断创伤性溃疡的关键在于
根据《医疗用毒性药品管理办法》,关于医疗机构使用医疗用毒性药品的说法,错误的是
患者,女性,48岁。育有1子。近3年痛经并逐渐加重,经量增多,经期延长,需服强镇痛药。检查:子宫均匀增大如孕2个月大小,质硬,有压痛。考虑痛经逐渐加重的原因是
排除滑坡地下水的方法有()。
宏观经济发展水平和状况是影响股票价格的重要因素,宏观经济因素包括()。
CanMedicinesMakeYouHealthy?药物能使你健康吗?Writeanessayof160-200wordsbasedonthedrawing.Inyouressay,youshould1)desc
Obesityisdefinedasbodyweightof15percentormoreabovetheidealforone’sheightandage.【C1】______thiscriterion,abou
最新回复
(
0
)