设(I)和(Ⅱ)都是4元齐次线性方程组,已知ξ1=(1,0,1,1)T,ξ2=(一1,0,1,0)T,ξ3=(0,1,1,0)T是(I)的一个基础解系,η1=(0,1,0,1)T,η2=(1,1,一1,0)T是(Ⅱ)的一个基础解系.求(I)和(Ⅱ)公共解.

admin2018-11-20  89

问题 设(I)和(Ⅱ)都是4元齐次线性方程组,已知ξ1=(1,0,1,1)T,ξ2=(一1,0,1,0)T,ξ3=(0,1,1,0)T是(I)的一个基础解系,η1=(0,1,0,1)T,η2=(1,1,一1,0)T是(Ⅱ)的一个基础解系.求(I)和(Ⅱ)公共解.

选项

答案(I)有一个基础解系ξ1,ξ2,ξ3,c1η1+c2η2满足(I)的充分必要条件为c1η1+c2η2能用ξ1,ξ2,ξ3线性表示,即r(ξ1,ξ2,ξ3,c1η1+c2η2)=r(ξ1,ξ2,ξ3).于是可以通过计算秩来决定c1,c2应该满足的条件: [*] 于是当3c1+c2=0时c1η1+c2η2也是(I)的解.从而(I)和(Ⅱ)的公共解为: c(η1一3η2),其中c可取任意常数.

解析
转载请注明原文地址:https://kaotiyun.com/show/15W4777K
0

最新回复(0)