首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设(I)和(Ⅱ)都是4元齐次线性方程组,已知ξ1=(1,0,1,1)T,ξ2=(一1,0,1,0)T,ξ3=(0,1,1,0)T是(I)的一个基础解系,η1=(0,1,0,1)T,η2=(1,1,一1,0)T是(Ⅱ)的一个基础解系.求(I)和(Ⅱ)公共解.
设(I)和(Ⅱ)都是4元齐次线性方程组,已知ξ1=(1,0,1,1)T,ξ2=(一1,0,1,0)T,ξ3=(0,1,1,0)T是(I)的一个基础解系,η1=(0,1,0,1)T,η2=(1,1,一1,0)T是(Ⅱ)的一个基础解系.求(I)和(Ⅱ)公共解.
admin
2018-11-20
105
问题
设(I)和(Ⅱ)都是4元齐次线性方程组,已知ξ
1
=(1,0,1,1)
T
,ξ
2
=(一1,0,1,0)
T
,ξ
3
=(0,1,1,0)
T
是(I)的一个基础解系,η
1
=(0,1,0,1)
T
,η
2
=(1,1,一1,0)
T
是(Ⅱ)的一个基础解系.求(I)和(Ⅱ)公共解.
选项
答案
(I)有一个基础解系ξ
1
,ξ
2
,ξ
3
,c
1
η
1
+c
2
η
2
满足(I)的充分必要条件为c
1
η
1
+c
2
η
2
能用ξ
1
,ξ
2
,ξ
3
线性表示,即r(ξ
1
,ξ
2
,ξ
3
,c
1
η
1
+c
2
η
2
)=r(ξ
1
,ξ
2
,ξ
3
).于是可以通过计算秩来决定c
1
,c
2
应该满足的条件: [*] 于是当3c
1
+c
2
=0时c
1
η
1
+c
2
η
2
也是(I)的解.从而(I)和(Ⅱ)的公共解为: c(η
1
一3η
2
),其中c可取任意常数.
解析
转载请注明原文地址:https://kaotiyun.com/show/15W4777K
0
考研数学三
相关试题推荐
一个盒子中5个红球,5个白球,现按照如下方式,求取到2个红球和2个白球的概率.逐个抽取,取后无放回;
设A,B为两个随机事件,则P{(+B)(A+B)}=________.
设相似于对角阵,求:A100.
设A为n阶实对称可逆矩阵,f(x1,x2,…,xn)=记X=(x1,x2,…,xn)T,把二次型f(x1,x2,…,xn)写成矩阵形式;
设A为n阶非奇异矩阵,α是n维列向量,b为常数,证明PQ可逆的充分必要条件是αTA一1α≠b.
设一汽车沿街道行驶,需要经过三个有红绿灯的路口,每个信号灯显示是相互独立的,且红绿灯显示时间相等,以X表示该汽车首次遇到红灯前已通过的路口个数,求X的分布.
10件产品有3件次品,7件正品,每次从中任取一件,取后不放回,求下列事件的概率:第三次才取得次品;
假设总体X是连续型随机变量,其概率密度X1,X1,…,Xn是来自总体X的简单随机样本,统计量Yn=n[1一max{X1,X1,…,Xn}]的分布函数为Fn(x).求证Fn(x)一F(x)(一∞<x<+∞),其中F(x)是参数为2的指
设函数f(u)连续,区域D={(x,y)|x2+y2≤2y},则等于()
已知随机变量(X,Y)在区域D={(x,y)|—1<x<1,—1<y<1}上服从均匀分布,则()
随机试题
Thebirdfluvirusismutatingandbecomingmoredangeroustomammals,accordingtoresearchers.Thediscoveryreinforcesfears
数字图像的最大特点是
根据五行相生规律确立的治则有错误的一项是
A.益气活血,化瘀通络B.平肝息风,化痰祛瘀通络C.息风清火,豁痰开窍,通腑泄热D.化痰息风,宣郁开窍E.平肝潜阳,滋养肝肾中经络的治法是
监理单位对其验收合格项目的施工质量负()。
根据中国银监会的规定,单个信托计划的自然人人数不得超过(),但单笔委托金额在()以上的自然人投资者和合格的机构投资者数量不受限制。
确定建立保险储备量时的再订货点,需要考虑的因素有()。
村民吴某称自己上初中的女儿在学校被侮辱,从学校的三楼跳下,小腿等多处骨折,目前在医院处于暂时昏迷状态,由吴某的家人负责照料。吴某到学校找到女儿的班主任,班主任称自己也是刚刚得知。吴某情急之下,纠集数十位情绪激动的亲朋好友来到镇政府门口,欲为女儿讨要说法。
根据以下资料。回答下列问题题。2012年,长春市汽车工业完成产值4888.5亿元,比上年增长16.5%;完成工业增加值1104.7亿元。2012年1-11月,汽车工业实现主营业务收入4954.2亿元,比上年同期增长11.6%;实现利润总
(2015年)若级数条件收敛,则与x=3依次为幂级数的
最新回复
(
0
)