首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设线性方程组 已知(1,-1,1,-1)T是该方程组的一个解,试求: (Ⅰ)方程组的全部解,并用对应的齐次线性方程组的基础解系表示全部解; (Ⅱ)该方程组满足x2=x3的全部解。
设线性方程组 已知(1,-1,1,-1)T是该方程组的一个解,试求: (Ⅰ)方程组的全部解,并用对应的齐次线性方程组的基础解系表示全部解; (Ⅱ)该方程组满足x2=x3的全部解。
admin
2017-11-30
223
问题
设线性方程组
已知(1,-1,1,-1)
T
是该方程组的一个解,试求:
(Ⅰ)方程组的全部解,并用对应的齐次线性方程组的基础解系表示全部解;
(Ⅱ)该方程组满足x
2
=x
3
的全部解。
选项
答案
将(1,-1,1,-1)
T
代入方程组,得λ=μ。 对方程组的增广矩阵[*]施以初等行变换,得 [*] r(A)=[*]=3<4,故方程组有无穷多解,且ξ
0
=[*]为其一个特解,对应的齐次线性方程组的基础解系为η=(-2,1,-1,2)
T
,故方程组的全部解为 [*] k为任意常数。 当λ=[*]时,有 [*] r(A)=[*]=2<4,故方程组有无穷多解,且ξ
0
=[*]为其一个特解,对应的齐次线性方程组的基础解系为η
1
=(1,-3,1,0)
T
,η
2
=(-1,-2,0,2)
T
,故方程组的全部解为 [*] k
1
,k
2
为任意常数。 [*] 其中k
2
为任意常数。
解析
转载请注明原文地址:https://kaotiyun.com/show/19X4777K
0
考研数学三
相关试题推荐
设f(x)∈C[a,b],在(a,b)内二阶可导,且f"(x)≥0,φ(x)是区间[a,b]上的非负连续函数,且∫abφ(x)dx=1.证明:∫abf(x)φ(x)dx≥f[∫abxφ(x)dx].
证明:当x≥0时,f(x)=∫0x(t一t2)sin2ntdt的最大值不超过
证明:,其中a>0为常数.
设f(x)在[0,1]上二阶可导,且f"(x)<0.证明:∫01f(x)dx≤.
某集邮爱好者有一个珍品邮票,如果现在(t=0)就出售,总收入为R0元,如果收藏起来待来日出售,t年末总收入为R(t)=R0eξ(t),其中ξ(t)为随机变量,服从正态分布,假定银行年利率为r,并且以连续复利计息,试求收藏多少年后,再出售可使得总收入的期望现
设向量组α1,α2,…,αt是齐次线性方程组Ax=0的一个基础解系,向量β不是方程组Ax=0的解,即Aβ≠0.证明:向量组β,β+α1,β+α2,…,β+αt,线性无关.
已知α1=[1,2,一3,1]T,α2=[5,一5,a,11]T,α3=[1,一3,6,3]T,α4=[2,一1,3,a]T.问:a为何值时,α4能由α1,α2,α3线性表出,并写出它的表出式.
随机地取两个正数x和y,这两个数中的每一个都不超过1,试求x与y之和不超过1,积不小于0.09的概率.
随机试题
宝玉挨打后,“两个眼睛肿的桃儿一般,满面泪光”的人是________。
服毒后的洗胃处理,正确的是()
钻石征见于
可以保持蛋白质活性的蛋白质沉淀方法是
男性外生殖器及前列腺的发育是由于乳腺腺泡发育主要是
既能补阳益阴,固精缩尿,明目,又能止泻的药物是
如果操作技能发展较言语技能好,则不可能出现的是()。
复数是虚数,则实数x应满足的条件是________.
在两岸统一问题上“寄希望于台湾人民”是指()。
Therichmanandthepoortailorlivedin______.Therichmangavethepoortailoralotofmoney,because______.
最新回复
(
0
)