首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x),g(x)在[a,b]上连续,且满足 ∫axf(t)dt≥∫axg(t)dt,x∈[a,b),∫abf(t)dt∫abg(t)dt.证明:∫abxf(x)dx≤∫abxg(x)dx.
设f(x),g(x)在[a,b]上连续,且满足 ∫axf(t)dt≥∫axg(t)dt,x∈[a,b),∫abf(t)dt∫abg(t)dt.证明:∫abxf(x)dx≤∫abxg(x)dx.
admin
2016-09-13
62
问题
设f(x),g(x)在[a,b]上连续,且满足
∫
a
x
f(t)dt≥∫
a
x
g(t)dt,x∈[a,b),∫
a
b
f(t)dt∫
a
b
g(t)dt.证明:∫
a
b
xf(x)dx≤∫
a
b
xg(x)dx.
选项
答案
当x∈[a,b)时, ∫
a
x
f(t)dt≥∫
a
x
g(t)dt<=>∫
a
x
[f(t)-g(t)]dt≥0, ∫
a
b
f(t)dt=∫
a
b
g(t)dt<=>∫
a
b
[f(t)-g(t)]dt=0, ∫
a
b
xf(x)dx≤∫
a
b
xg(x)dx<=>∫
a
b
x[f(x)-g(x)]dx≤0, 令G(x)=∫
a
x
[f(t)-g(t)]dt,则Gˊ(x)=f(x)-g(x),于是 ∫
a
b
x[f(x)-g(x)]dx=∫
a
b
xd[∫
a
x
(f(t)-g(t))dt] [*]x∫
a
x
[f(t)-g(t)]dt|
a
b
-∫
a
b
[∫
a
x
(f(t)-g(t))dt]dx =-∫
a
b
[∫
a
x
(f(t)-g(t))dt]dx≤0(因为G(x)=∫
a
x
[f(t)-g(t)]dt≥0), 即∫
a
b
x[f(x)-g(x)]dx≤0,即∫
a
b
xf(x)dx≤∫
a
b
xg(x)dx.
解析
转载请注明原文地址:https://kaotiyun.com/show/1RT4777K
0
考研数学三
相关试题推荐
A、 B、 C、 D、 B
二次型f(x1,x2,x3)=(x1+ax2-2x3)2+(2x2+3x3)2+(x1+3x2+ax3)2正定的充分必要条件为________.
由题设条件有βTαi=0(i=1,2,…,r),设k1α1+k2α2+…+krαr+kr+1β=θ,(*)两端左乘βT,得kr+1βTβ=0;又β≠θ,可得βTβ=||β||2>0,故kr+1=0,代入式(*),得k1α1+k2
求幂级数的收敛区间,并讨论该区间端点处的收敛性.
将函数f(x)=e2x,x∈[0,π]展开成余弦级数.
作适当的变换,计算下列二重积分:
试确定常数A,B,C的值,使得ex(1+Bx+Cx2)=1+Ax+o(x3),其中o(x3)是当x→0时比x3高阶的无穷小.
设A为n阶实对称矩阵,秩(A)=n,Aij是A=(aij)n×x中元素aij的代数余子式(i,j=1,2,…,n),二次型f(x1,x2,...,xn)=Aij/丨A丨xixj.二次型g(X)=XTAX与f(X)的规范形是否相同?说明理由.
设f(x)满足,当x→0时,Incosx2是比xnf(x)高阶的无穷小量,而xnf(x)是比esin2x一1高阶的无穷小,则正整数n等于().
设随机变量X取非负整数值的概率为P{X=n}=an,则EX=___________.
随机试题
依据《中华人民共和国职业分类大典(2015年版)》的职业分类结构,第二大类指()。
房地产经纪机构接收委托代理出租房屋,应注意查验该房屋的()。
某破产企业有10位债权人,债权总额为1200万元,其中债权人甲、乙的债权合计为300万元,均有破产企业的房产作抵押,债权人甲、乙未放弃优先受偿权。债权人会议拟讨论通过和解协议,10位债权人均出席了债权人会议,债权人甲、乙未参加表决。根据企业破产法律制度的规
美术教学导入时应注重()。
【材料一】中央红军第五次反“围剿”的失败和长征初期红军力量遭受的严重损失,引起了广大干部和战士对王明军事路线的怀疑和不满,纷纷要求改换错误的领导。同时,在长征途中毛泽东对执行王明军事路线的一些领导同志做了耐心细致的工作,使他们很快觉悟过来。在这种情况下,为
定义:①专有名词:表示具体的人、事物、地点或机构的专有名称。②抽象名词:表示动作、状态、品质或其他抽象概念。③具体名词:表示物质或不具备确定形状和大小的个体的物质。典型例证:(1)水(2)北京(3)友情上述典型例证与定义存在对应关系的数目有(
工业革命期间,有两种植物的病害在污染严重的英国工业城市消失了,一种是黑斑病,会感染玫瑰;另一种是焦油斑点病,会感染梧桐。生物学家认为,有可能是空气污染消除了这两种病害。以下哪项陈述为真,能最有效地支持上述论证?
北方航空公司实行对教师机票六五折优惠,这实际上是吸引乘客的一种经营策略,该航空公司并没有实际让利,因为当某天某航班的满员率超过90%时,就停售当天优惠价机票,而即使在高峰期,航班的满员率也很少超过90%。有座位空着,何不以优惠价促销它呢?以下哪项如果为真,
Readthearticlebelowabouteffectivecommunicationandthequestionsontheoppositepage.Foreachquestion(13-18),markone
Thepricesquotedabovedonotincludeanytaxesandlevies______uponthePersonnelbytheGovernmentoftheproject-hostcountr
最新回复
(
0
)