首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在(-∞,+∞)内连续且严格单调递增,f(0)=0.常数n为正奇数,并设F(x)=∫0xtnf(t)dt,则下列结论判断正确的是( ).
设f(x)在(-∞,+∞)内连续且严格单调递增,f(0)=0.常数n为正奇数,并设F(x)=∫0xtnf(t)dt,则下列结论判断正确的是( ).
admin
2022-06-04
42
问题
设f(x)在(-∞,+∞)内连续且严格单调递增,f(0)=0.常数n为正奇数,并设F(x)=
∫
0
x
t
n
f(t)dt,则下列结论判断正确的是( ).
选项
A、F(x)在(-∞,0)内严格单调递增,在(0,+∞)内严格单调递增
B、F(x)在(-∞,0)内严格单调递增,在(0,+∞)内严格单调递减
C、F(x)在(-∞,0)内严格单调递减,在(0,+∞)内严格单调递增
D、F(x)在(-∞,0)内严格单调递减,在(0,+∞)内严格单调递减
答案
C
解析
F’(x)=
,其中ξ介于0与x之间.
当x>0时,0<ξ<x,于是0<ξ
n
<x
n
.
因为f(x)严格单调递增,有0<f(ξ)<f(x),于是0<ξ
n
f(ξ)<x
n
f(x),故
当x>0时,F’(x)>0,F(x)严格单调递增;
当x<0时,则x<ξ<0,于是x
n
<ξ
n
<0,因为f(x)严格单调递增,有f(x)<f(ξ)<0,于是x
n
f(x)>ξ
n
f(ξ)>0,故当x<0时,F’(x)<0,F(x)严格单调递减.
转载请注明原文地址:https://kaotiyun.com/show/1al4777K
0
考研数学一
相关试题推荐
求积分
假设检验时,若增大样本容量,则犯两类错误的概率().
已知f(x)在[0,1]上连续,在(0,1)内可导,且f(1)=0,证明:在区间(0,1)内至少有一点ξ,使得
设随机变量(X,Y)的概率密度为试求:P{0<X≤1,0<Y≤2}.
设D是以曲线及y轴为边界的无界区域,则二重积分
对任意事件A,B,下面结论正确的是().
曲线渐近线的条数为().
设函数f(x)在x=0处可导,且f(0)=0,f′(0)≠0,则下述极限存在且为零的是().
正项数列{an}单调减少,且发散,讨论是否收敛.
(2011年)(I)证明:对任意的正整数n,都有成立;(Ⅱ)设证明数列{an}收敛。
随机试题
考生文件夹下存在一个数据库文件“samp2.accclb”,里面已经设计好两个表对象住宿登记表“tA”和住房信息表“tB”,其中“tA”和“tB”表中“房间号”的前两位为楼号。试按以下要求完成设计:(1)创建一个查询,查找楼号为“01”的客人记录
风湿热的一般表现中不包括
属于胃肠动力变化而影响药物吸收的是
痰蒙心神证的表现应除外哪项()
链斗式挖泥船顺流施工时其尾锚抛设应()。
江老师十分注重自我学习,却经常不参加学校的校本研修活动。江老师的行为()
2016年6月下旬,英国举行了脱欧公投,“脱欧”是指脱离()。
马克思主义是科学,从根本上说在于它()。
关于法律权利与法律义务的关系,正确的观点有
Childrengoingtoschoolmusthaveachanceto_____excessphysicalenergy;childrenevenmorethanadultsrequireandenjoyphys
最新回复
(
0
)