首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在(-∞,+∞)内连续且严格单调递增,f(0)=0.常数n为正奇数,并设F(x)=∫0xtnf(t)dt,则下列结论判断正确的是( ).
设f(x)在(-∞,+∞)内连续且严格单调递增,f(0)=0.常数n为正奇数,并设F(x)=∫0xtnf(t)dt,则下列结论判断正确的是( ).
admin
2022-06-04
43
问题
设f(x)在(-∞,+∞)内连续且严格单调递增,f(0)=0.常数n为正奇数,并设F(x)=
∫
0
x
t
n
f(t)dt,则下列结论判断正确的是( ).
选项
A、F(x)在(-∞,0)内严格单调递增,在(0,+∞)内严格单调递增
B、F(x)在(-∞,0)内严格单调递增,在(0,+∞)内严格单调递减
C、F(x)在(-∞,0)内严格单调递减,在(0,+∞)内严格单调递增
D、F(x)在(-∞,0)内严格单调递减,在(0,+∞)内严格单调递减
答案
C
解析
F’(x)=
,其中ξ介于0与x之间.
当x>0时,0<ξ<x,于是0<ξ
n
<x
n
.
因为f(x)严格单调递增,有0<f(ξ)<f(x),于是0<ξ
n
f(ξ)<x
n
f(x),故
当x>0时,F’(x)>0,F(x)严格单调递增;
当x<0时,则x<ξ<0,于是x
n
<ξ
n
<0,因为f(x)严格单调递增,有f(x)<f(ξ)<0,于是x
n
f(x)>ξ
n
f(ξ)>0,故当x<0时,F’(x)<0,F(x)严格单调递减.
转载请注明原文地址:https://kaotiyun.com/show/1al4777K
0
考研数学一
相关试题推荐
积分
对于正态总体N(μ,σ2)的均值μ进行假设检验,如果在显著水平0.05下接受H0:μ=μ0,那么在显著水平0.01下,下列结论正确的是().
设f(x)是周期为2的函数,其在(一1,1]上的表达式为写出f(x)的傅里叶级数在区间[一1,1]上的和函数5(x)的表达式,并求s(4),
设证明:在(0,1)内至少存在一点ξ,使得a0+a1ξ+a2ξ2+…+anξn=0
曲线的渐近线的条数为().
设f(x,y,z)是k次齐次函数,即f(tx,ty,tz)=tkf(x,y,z),其中λ为某一常数,f(x,y,z)可微,则下列结论正确的是().
设试证:对任意常数λ>0,级数收敛.
求极限
设f(x)是以T为周期的连续函数(若下式中用到f'(x),则设f'(x)存在),则以下结论中不正确的是
[2011年](I)证明对任意的正整数都有成立;(Ⅱ)设(n=1,2,…),证明数列{an}收敛.[img][/img]
随机试题
A、宫颈刮片细胞学检查B、分段诊断性刮宫C、接触性出血D、最常见的妇科良性肿瘤E、绝经后阴道不规则出血宫颈癌的典型临床表现
下列各项中,不应当作为企业存货核算的有()。
根据企业破产法律制度的规定,下列各项中,人民法院应当裁定终止和解程序,并宣告债务人破产的情形有()。
已知:某企业上年营业收入净额为6900万元,全部资产平均余额为2760万元,流动资产平均余额为1104万元;本年营业收入净额为7938万元,全部资产平均余额为2940万元,流动资产平均余额为1323万元。要求:计算上年与本年的总资产周转率(次)、流动
阅读下面材料,回答问题。精神之树张栓固走过古柏掩映的神路,已感到无形的凉意扑面,世事的喧闹在思绪里一点点地远离。在神路的引导下,我们走向这向往已久的老祖宗的庭院,跨越过青石牌坊,走过石桥,我和人们一道虔诚地扑进了千年智者老人的怀抱,充分享受着那种心灵
教育部、国家语委发布的《国家语言文字事业“十三五”发展规划》,提出未来5年的发展目标,即到2020年()。
取保候审属于刑事司法工作中的( )。
资本主义国家选举的实质是
DearMr.Miller,Wereceivedyourletterrequestinghelpto【K4】______youraccesscodesothatyoucangainadmittancetoChenez’
AtleastsincetheIndustrialRevolution,genderroleshavebeeninastateoftransition.Asaresult,culturalscriptsaboutm
最新回复
(
0
)