首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f为U0(x0)内的递增函数.证明:若存在数列{xn}U-0(x0),且xn→x0(n→∞),使得f(xn)=A.则有f(x0-0)=f(x)=A.
设f为U0(x0)内的递增函数.证明:若存在数列{xn}U-0(x0),且xn→x0(n→∞),使得f(xn)=A.则有f(x0-0)=f(x)=A.
admin
2022-10-31
52
问题
设f为U
0
(x
0
)内的递增函数.证明:若存在数列{x
n
}
U
-
0
(x
0
),且x
n
→x
0
(n→∞),使得
f(x
n
)=A.则有f(x
0
-0)=
f(x)=A.
选项
答案
先证f(x)在U
-
0
(x
0
)内有界.由[*]f(x
n
)=A知,对于ε=1,存在N
1
,使得当n>N
1
时,|f(x
n
)-A|<ε=1,从而此时有f(x
n
)<|A|+1. 设ξ∈U
-
0
(x
0
),则ξ<x
0
,由[*]x
n
=x
0
得[*](x
n
-ξ)=x
0
-ξ>0.由极限保号性知,存在N
2
,使得当n>N
2
时x
n
-ξ>0,由f(x)的递增性知,此时有f(ξ)≤f(x
n
).取N=max{N
1
,N
2
},则当n>N时,f(ξ)≤f(x
n
)≤|A|+1.于是f(x)在U
-
0
(x
0
)内有上界.由确界原理知,f(x)有上确界.令B=[*]f(x).则对[*]ε>0,[*]x’∈U
-
0
(x
0
).使得f(x’)>B-ε,于是.当x∈U
-
0
(x
0
;x
0
-x’)时,有 B-ε<f(x’)≤f(x)≤B<B+ε,故[*]f(x)=f(x
0
-0)=B. 由归结原则得[*]f(x
n
)=B,于是B=A,即f(x
0
-0)=[*]f(x)=A.
解析
转载请注明原文地址:https://kaotiyun.com/show/1hgD777K
0
考研数学三
相关试题推荐
如果尽可能多的包装都用垃圾场里可生物降解的材料来制造的话,这将对环境更加有益。因此,用在垃圾场不可生物降解的塑料制造的包装来取代用纸或纸板制造的包装,总是一个更糟的变化。以下哪一项如果正确。将构成对上面论述的最强烈的反对?
句式选择的总的原则是什么?
某县扶贫办副主任甲,利用职务将一项造价20万的扶贫工程定价40万,对外招标。甲冒用A公司的营业执照、安全许可证等证明材料,参与该项目招标,又通过职权运作使“A公司”中标。之后,甲以“A公司”的名义将工程交给村民乙承建,并在工程完工验收后,利用职权将40万元
甲公司向乙银行贷款从丙公司处购买了一批货物。甲公司购置货物后的第三天,将该批货物先后抵押给丁公司、戊公司,戊公司的抵押担保办理了抵押登记。甲公司购置货物的第五天又将该批货物抵押给乙银行作为担保,并办理了抵押登记。若甲公司到期不能清偿各债权人的债权,则对该批
“倾销”被定义为以低于商品生产成本的价格在另一国销售这种商品的行为。H国的河虾生产者正在以低于M国河虾生产成本的价格,在M国销售河虾。因此H国的河虾生产者正在M国倾销河虾。以下哪一项对评估上文提到的倾销行为是必要的?
历史证明,民族兴旺、国家发展的关键因素是国民素质的提高。因此,实现我国宏伟发展目标的关键措施是进一步增加教育投入。上述断定基于以下哪项假设?Ⅰ.教育事业的发展是提高国民素质的重要条件。Ⅱ.增加教育投入是发展教育事业的重要条件。Ⅲ.我
等差数列{an)的前n项和为Sn,若S12<0,S13>0,那么Sn取最小值时,n为().
关于x的一元二次方程x2-mx+2m-1=0的两个实数根分别是x1,x2,且x12+x22=7,则(x1-x2)2的值是()。
当正整数k被12除时,余数是3,下列哪一项被12除时,余数是6()。①2k②6k③4k+6
求下列函数极限(n,m为正整数)
随机试题
在优待民警方面,“二十公”提出要实行()。
期望理论属于()
孔子认为“大同”、“小康”二者最本质的区别是()
一侧颅神经瘫痪及对侧上下肢瘫痪称为
绩效具有的特点有()。
企业自销的应税矿产品应交资源税,应计入()。
甲与乙共谋次日共同杀丙,但次日甲因腹泻未能前往犯罪地点,乙独自一人杀死丙。关于本案,下列哪些说法是正确的?()
Researchersareincreasinglyinterestedinmanipulatingtheenvironmentearlyinchildren’sliveswhentheyareperceivedtobe
数据库技术的根本目标是要解决数据的()。
(1)ちょうど(2)せっかく(3)いつも(4)ときどき(5)ちょっと(6)ところを(7)それにしても(8)なぜならば(9)しかも(10)なんとか
最新回复
(
0
)