首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设4维向量组α1=(1+α,1,1,1)T,α2=(2,2+α,2,2)T,α3=(3,3,3+α,3)T,α4=(4,4,4,4+α)T,问α为何值时,α1,α2,α3,α4线性相关?当α1,α2,α3,α4线性相关时,求其一个极大线性无关组,并将其余向
设4维向量组α1=(1+α,1,1,1)T,α2=(2,2+α,2,2)T,α3=(3,3,3+α,3)T,α4=(4,4,4,4+α)T,问α为何值时,α1,α2,α3,α4线性相关?当α1,α2,α3,α4线性相关时,求其一个极大线性无关组,并将其余向
admin
2015-09-12
77
问题
设4维向量组α
1
=(1+α,1,1,1)
T
,α
2
=(2,2+α,2,2)
T
,α
3
=(3,3,3+α,3)
T
,α
4
=(4,4,4,4+α)
T
,问α为何值时,α
1
,α
2
,α
3
,α
4
线性相关?当α
1
,α
2
,α
3
,α
4
线性相关时,求其一个极大线性无关组,并将其余向量用该极大线性无关蛆线性:表出.
选项
答案
解1 记A=(α
1
,α
2
,α
3
,α
4
),则 [*]于是当α=0或α=一10时,α
1
,α
2
,α
3
,α
4
线性相关. 当α=0时,α
1
≠0,且α
2
,α
3
,α
4
均可由α
1
线性表出,故α
1
为α
1
,α
2
,α
3
,α
4
的一个极大线性无关组,且α
2
=2α
1
,α
3
=3α
1
,α
4
=4α
1
. 当α=一10时,对A施以初等行变换,有 [*] 由于β
2
,β
3
,β
4
为β
1
,β
2
,β
3
,β
4
的一个极大线性无关组,且β
1
=一β
2
一β
3
一β
4
,故α
2
,α
3
,α
4
为α
1
,α
2
,α
3
,α
4
的一个极大线性无关组,且α
1
=一α
2
一α
3
一α
4
. 解2 记A=(α
1
,α
2
,α
3
,α
4
),对A施以初等行变换,有 [*] 当α=0时,A的秩为1,因而α
1
,α
2
,α
3
,α
4
线性相关,此时α
1
为,α
1
α
2
,α
3
,α
4
的一个极大线性无关组,且α
2
=2α
1
,α
3
=3α
1
,α
4
=4α
1
. 当α≠0时,再对B施以初等行变换,有 [*] 如果α≠一10,C的秩为4,从而A的秩为4,故α
1
,α
2
,α
3
,α
4
线性无关. 如果α=一10,C的秩为3,从而A的秩为3,故α
1
,α
2
,α
3
,α
4
线性相关. 由于γ
2
,γ
3
,γ
4
为γ
1
,γ
2
,γ
3
,γ
4
的一个极大线性无关组,且γ
1
=一γ
2
一γ
3
一γ
4
.于是α
2
,α
3
,α
4
为α
1
,α
2
,α
3
,α
4
的一个极大线性无关组,且α
1
=一α
2
一α
3
一α
4
.
解析
本题综合考查向量组线性相关与线性无关,向量组的极大无关组等基本概念及线性表出问题的基本计算方法.本题当α=0时,容易观察得到所给向量组的秩为1,从而知极大无关组只含1个向量,于是选其中一个非零向量便可作极大无关组,而且线性表出问题也由观察即可直接得到.当α≠0时,无论是解1还是解2,都用到了一个重要结论:矩阵的初等行变换不改变矩阵列向量组之间的线性关系.
转载请注明原文地址:https://kaotiyun.com/show/1qU4777K
0
考研数学三
相关试题推荐
在中国古代哲学中,实践主要是指道德伦理行为;在西方哲学史上,关于实践也有不少论述,如康德把实践看成理性自主的道德活动,费尔巴哈把实践等同于生物适应环境的活动。这些看法都没有看到实践在人类认识和整个社会生活中的决定意义。马克思科学阐明了人类实践的本质及其特征
在农业的社会主义改造过程中,具有半社会主义性质的组织形式是
邓小平理论是马克思列宁主义基本原理与当代中国实际和时代特征结合的产物,是马克思列宁主义、毛泽东思想的继承和发展,是全党全国人民集体智慧的结晶。把邓小平理论确立为中国共产党的指导思想并写入党章是在
1945年8月,蒋介石连发三电,邀请毛泽东赴重庆谈判。8月28日,毛泽东偕同周恩来、王若飞,在国民党政府代表张治中和美国驻华大使赫尔利陪同下,赴重庆与国民党当局进行谈判。这一行动证明,共产党
这次新冠肺炎疫情,是新中国成立以来在我国发生的传播速度最快.感染范围最广、防控难度最大的一次重大突发公共卫生事件。对我们来说,这是一次危机,也是一次大考。实践证明,党中央对疫情形势的判断是准确的,各项工作部署是及时的,采取的举措是有力有效的。防控工作取得的
已知向量组α1=(t,2,1),α2=(2,t,0),α3=(1,-1,1),试讨论:(1)t为何值时,向量组α1,α2,α3线性相关?(2)t为何值时,向量组α1,α2,α3线性无关?
从[0,1]中随机取两个数,求两数之和小于6/5的概率.
已知二次型f(x1,x2,x3,x4)=2x1x2+2x1x3+2x1x4+2x3x4,则二次型f(x1,x2,x3,x4)的矩阵为_______,二次型f(x1,x2,x3,x4)的秩为________.
设n元二次型f(x1,x2,…,xn)=XTAX,其中AT=A.如果该二次型通过可逆线性变换X=CY可化为f(y1,y2,…,yn)=YTBY,则以下结论不正确的是().
设A是n阶实对称矩阵,P是n阶可逆矩阵.已知n维列向量α是A的属于特征值A的特征向量,则矩阵(P-1AP)T属于特征值A的特征向量是
随机试题
在竞争优势分析的基本价值链模型中,下列属于基本活动的是()
心理生理性失眠睡眠调节性障碍
小儿虫积,腹痛时作,面黄体瘦,肚腹胀满,发热口臭,大便失常者,治疗宜用()
2004年2月9日,原告李某酒后来到县城浴室洗澡。洗完后,李某躺在二号池的搁板上睡觉,被浴室工作人员发现并制止。李某在爬起时,脚下一滑,从搁板上掉落二号池内,当即被人拉出。因二号池水温在80℃以上,李某被烫伤。李某受伤后,浴室方面拒绝送其到医院治疗。他为节
以下哪种行为属于自力救济的范畴?
在工程地质勘察中,直接观察地层结构变化的方法是:
设备监理工程师进行合同管理的对象为()。
记账人员根据记账凭证记账后,在“记账符号”栏内作“√”记号,表示该笔金额已记入有关账户,以免漏记或重记。()
下列选项中,不属于会计等式的是()。
下列关于铅的说法错误的是()。
最新回复
(
0
)