首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设4维向量组α1=(1+α,1,1,1)T,α2=(2,2+α,2,2)T,α3=(3,3,3+α,3)T,α4=(4,4,4,4+α)T,问α为何值时,α1,α2,α3,α4线性相关?当α1,α2,α3,α4线性相关时,求其一个极大线性无关组,并将其余向
设4维向量组α1=(1+α,1,1,1)T,α2=(2,2+α,2,2)T,α3=(3,3,3+α,3)T,α4=(4,4,4,4+α)T,问α为何值时,α1,α2,α3,α4线性相关?当α1,α2,α3,α4线性相关时,求其一个极大线性无关组,并将其余向
admin
2015-09-12
83
问题
设4维向量组α
1
=(1+α,1,1,1)
T
,α
2
=(2,2+α,2,2)
T
,α
3
=(3,3,3+α,3)
T
,α
4
=(4,4,4,4+α)
T
,问α为何值时,α
1
,α
2
,α
3
,α
4
线性相关?当α
1
,α
2
,α
3
,α
4
线性相关时,求其一个极大线性无关组,并将其余向量用该极大线性无关蛆线性:表出.
选项
答案
解1 记A=(α
1
,α
2
,α
3
,α
4
),则 [*]于是当α=0或α=一10时,α
1
,α
2
,α
3
,α
4
线性相关. 当α=0时,α
1
≠0,且α
2
,α
3
,α
4
均可由α
1
线性表出,故α
1
为α
1
,α
2
,α
3
,α
4
的一个极大线性无关组,且α
2
=2α
1
,α
3
=3α
1
,α
4
=4α
1
. 当α=一10时,对A施以初等行变换,有 [*] 由于β
2
,β
3
,β
4
为β
1
,β
2
,β
3
,β
4
的一个极大线性无关组,且β
1
=一β
2
一β
3
一β
4
,故α
2
,α
3
,α
4
为α
1
,α
2
,α
3
,α
4
的一个极大线性无关组,且α
1
=一α
2
一α
3
一α
4
. 解2 记A=(α
1
,α
2
,α
3
,α
4
),对A施以初等行变换,有 [*] 当α=0时,A的秩为1,因而α
1
,α
2
,α
3
,α
4
线性相关,此时α
1
为,α
1
α
2
,α
3
,α
4
的一个极大线性无关组,且α
2
=2α
1
,α
3
=3α
1
,α
4
=4α
1
. 当α≠0时,再对B施以初等行变换,有 [*] 如果α≠一10,C的秩为4,从而A的秩为4,故α
1
,α
2
,α
3
,α
4
线性无关. 如果α=一10,C的秩为3,从而A的秩为3,故α
1
,α
2
,α
3
,α
4
线性相关. 由于γ
2
,γ
3
,γ
4
为γ
1
,γ
2
,γ
3
,γ
4
的一个极大线性无关组,且γ
1
=一γ
2
一γ
3
一γ
4
.于是α
2
,α
3
,α
4
为α
1
,α
2
,α
3
,α
4
的一个极大线性无关组,且α
1
=一α
2
一α
3
一α
4
.
解析
本题综合考查向量组线性相关与线性无关,向量组的极大无关组等基本概念及线性表出问题的基本计算方法.本题当α=0时,容易观察得到所给向量组的秩为1,从而知极大无关组只含1个向量,于是选其中一个非零向量便可作极大无关组,而且线性表出问题也由观察即可直接得到.当α≠0时,无论是解1还是解2,都用到了一个重要结论:矩阵的初等行变换不改变矩阵列向量组之间的线性关系.
转载请注明原文地址:https://kaotiyun.com/show/1qU4777K
0
考研数学三
相关试题推荐
经过多年持续改革发展,我国社会保障事业取得了显著成效,实现了从单位保障到社会保障,从企业单方责任到国家、单位和个人三方共担责任的重大转变,建成以社会保险、社会救助、社会福利为基础,以基本养老、基本医疗、最低生活保障为重点,以慈善事业、商业保险为补充的覆盖全
金融垄断资本得以形成和壮大的重要制度条件是
列宁是坚定的马克思主义者,他结合新的时代发展条件和俄国实际,丰富和发展了马克思主义。在俄国社会主义革命取得胜利的初期,特别是实行新经济政策期间,列宁对苏维埃俄国如何建设社会主义进行了深刻的理论思考,提出了许多精辟的论述。这些论述包括
习近平总书记强调,要“把对法治的尊崇、对法律的敬畏转化成思维方式和行为方式”。用法治思维求善治,即反对人治思维、特权思维,运用法律规范、法律原则、法律逻辑分析和处理我们党治国理政中面临的问题,积极推进法治国家、法治政府、法治社会建设。法治思维和人治思维的区
已知向量组α1=(t,2,1),α2=(2,t,0),α3=(1,-1,1),试讨论:(1)t为何值时,向量组α1,α2,α3线性相关?(2)t为何值时,向量组α1,α2,α3线性无关?
设α1,α2,…,αm-1(m≥3)线性相关,向量组α2,…,αm线性无关,试讨论αm能否由α1,α2,…,αm-1线性表示?
已知二次型f(x1,x2,x3)=x12+5x22+x32+2x1x2+2ax2x3为正定二次型,则a的取值范围是——.
已知二次型f(x1,x2,x3)=x12+5x22+x32+2x1x2+2ax2x3为正定二次型,则a的取值范围________.
设A,B为3阶矩阵,且|A|=3,|B|=2,|A-1+B|=2,则|A+B-1|=_____________.
设3阶矩阵A的特征值为2,3,λ.若行列式|2A|=-48,则λ=________.
随机试题
A.创伤性关节炎B.骨筋膜室综合征C.外伤性移位D.关节僵硬E.关节积液(2004年)踝部骨折易造成
下面哪项不是治疗先天性脑积水解除阻塞的手术
A.低危险组B.中危险组C.高危险组D.极高危险组E.高血压脑病患者,男,44岁。因陈旧性下壁心肌梗死,伴不稳定性心绞痛入院,血压150/95mmHg
A.在岗执业、标识明确B.诚信服务、一视同仁C.履职尽责、指导用药D.加强交流、合作互助执业药师药学服务规范执业药师不得虚假宣传药品疗效和药品风险体现了()。
下列各项中属于存货变动性储存成本的有()。
在社会主义公有制中,个人消费品分配的依据是______。
______ispopularinthesouth?______hasflowersofdifferentcolorsbetweensingleformanddoubleform?
A、Thereare200vehiclesforeverykilometerofroadway.B、Ithasdensepopulation.C、Therearemanymuseumsandpalaces.D、Ith
【B1】【B9】
TipsforSavingElectricityYouprobablydon’tevenrealizeit,butanenergythiefisinsideyourhomeatthisverymoment.
最新回复
(
0
)