首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知A,B为三阶非零方阵, 为齐次线性方程组BX=0的3个解向量,且AX=β3有非零解. (1)求a,b的值; (2)求BX=0的通解.
已知A,B为三阶非零方阵, 为齐次线性方程组BX=0的3个解向量,且AX=β3有非零解. (1)求a,b的值; (2)求BX=0的通解.
admin
2016-12-16
137
问题
已知A,B为三阶非零方阵,
为齐次线性方程组BX=0的3个解向量,且AX=β
3
有非零解.
(1)求a,b的值;
(2)求BX=0的通解.
选项
答案
(1)因B≠0,故r(B)≥1,因而BX=0的基础解系所含解向量的个数为 n一r(B)≤3—1=2个, 而β
1
,β
2
,β
3
均是BX=0的解,故β
1
,β
2
,β
3
必线性相关,于是 |β
1
,β
2
,β
3
|=[*] 解得a=3b.又Ax=β
3
有非零解,即β
3
可由A的3个列向量 [*] 线性表示,由观察易看出 α
3
=3α
1
+2α
2
. 可见,风可由α
1
,α
2
线性表示,因此β
3
,α
1
,α
2
线性相关,于是 |β
3
,α
1
,α
2
|=[*] 解得b=5,从而a=15. (2)由题设r(B)≥1,于是3一r(B)≤2,又已知β
1
,β
2
为BX=0的两个线性无关的解,故 3一r(B)≥2,所以3一r(B)=2,β
1
,β
2
即可作为BX=0的基础解系,故通解为 X=k
1
β
1
+k
2
β
2
(k
1
,k
2
为任意常数).
解析
因r(B)≥1,故β
1
,β
2
,β
3
必线性相关.又由AX=β
3
知,β
3
可表示为A的3个列向量的线性组.由这两个线性关系式可求出a,b.
转载请注明原文地址:https://kaotiyun.com/show/2BH4777K
0
考研数学三
相关试题推荐
证明:二三点A(1,0,-1),B(3,4,5),C(0,-2,一4)共线.
求下列微分方程的通解(1)xyˊ+y-2y3=0;(2)xyˊlnx+y=x(1+lnx);(3)yˊ+ex(1-e-y)=0;(4)yy〞-yˊ2-1=0.
试求y〞=x的经过点(0,1)且在此点与直线y=x/2+1相切的积分曲线.
求常数a、b、c的值,使函数f(x,y,z)=axy2+byz+cx3z2在点(1,-1)处沿z轴正方向的方向导数成为各方向的方向导数中的最大者,且此最大值为6
设n元二次型f(x1,x2,…,xn)=XTAX,其中AT=A.如果该二次型通过可逆线性变换X=CY可化为f(y1,y2,…,yn)=YTBY,则以下结论不正确的是().
设函数f(x)在区间[0,1]上连续,在(0,1)内可导,且f(0)=f(1)=0,f(1/2)=1.试证:存在η∈(1/2,1),使f(η)=η;
在一通信渠道中,能传送字符AAAA,BBBB,CCCC三者之一,由于通信噪声干扰,正确接收到被传送字母的概率为0.6,而接收到其他两个字母的概率均为0.2,假设前后字母是否被歪曲互不影响.求收到字符ABCA的概率;
设随机变量X,Y相互独立,它们的分布函数为FX(x),Fy(y),则Z=min(X,Y)的分布函数为().
设两个随机变量X与Y独立同分布,P{X=-1}=P{Y=-1}=1/2,P{X=1}=P{Y=1}=1/2,则下列各式中成立的是().
设函数f(x)对任意x均满足等式f(1+x)=af(x),且fˊ(0)=b,其中a,b为非零常数,则().
随机试题
患者,男性,肺心病,因肺部感染入院,血气分析结果:pH7.33,PaCO29.3kPa(70mmHg),HCO3-36mmol/L。由于治疗不当而使疾病加重时,可应用
关于药物流行病学的叙述,不正确的是:
鉴别肾盂肾炎或膀胱炎最有意义的是
能抑制脱氧胸苷酸合成酶的药物是氟尿嘧啶。()
从2006年1月1日起,曹小姐发现自己基本养老保险中个人账户的缴费比例发生了变化,其规模统一由本人缴费工资的11%调整为()。
下列杂剧不是关汉卿所作的是()。
幼儿园的环境创设主要是指()。
设f(x)在[a,+∞)上连续,f(a)
设A、B为任意两个事件,且AB,P(B)>0,则下列选项必然成立的是()
以下是学生选课系统中“学生查询成绩”交互行为的描述,请按要求回答问题。交互开始时终端上显示首页,用户选择“查询”请求后,显示“请输入学号”。在用户输入学号后,系统核对学生学号:若输入的学号不正确,则显示“输入的学号不正确”,此次查询取消,回
最新回复
(
0
)