首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知A,B为三阶非零方阵, 为齐次线性方程组BX=0的3个解向量,且AX=β3有非零解. (1)求a,b的值; (2)求BX=0的通解.
已知A,B为三阶非零方阵, 为齐次线性方程组BX=0的3个解向量,且AX=β3有非零解. (1)求a,b的值; (2)求BX=0的通解.
admin
2016-12-16
103
问题
已知A,B为三阶非零方阵,
为齐次线性方程组BX=0的3个解向量,且AX=β
3
有非零解.
(1)求a,b的值;
(2)求BX=0的通解.
选项
答案
(1)因B≠0,故r(B)≥1,因而BX=0的基础解系所含解向量的个数为 n一r(B)≤3—1=2个, 而β
1
,β
2
,β
3
均是BX=0的解,故β
1
,β
2
,β
3
必线性相关,于是 |β
1
,β
2
,β
3
|=[*] 解得a=3b.又Ax=β
3
有非零解,即β
3
可由A的3个列向量 [*] 线性表示,由观察易看出 α
3
=3α
1
+2α
2
. 可见,风可由α
1
,α
2
线性表示,因此β
3
,α
1
,α
2
线性相关,于是 |β
3
,α
1
,α
2
|=[*] 解得b=5,从而a=15. (2)由题设r(B)≥1,于是3一r(B)≤2,又已知β
1
,β
2
为BX=0的两个线性无关的解,故 3一r(B)≥2,所以3一r(B)=2,β
1
,β
2
即可作为BX=0的基础解系,故通解为 X=k
1
β
1
+k
2
β
2
(k
1
,k
2
为任意常数).
解析
因r(B)≥1,故β
1
,β
2
,β
3
必线性相关.又由AX=β
3
知,β
3
可表示为A的3个列向量的线性组.由这两个线性关系式可求出a,b.
转载请注明原文地址:https://kaotiyun.com/show/2BH4777K
0
考研数学三
相关试题推荐
求下列函数的极值:
求下列函数的全微分:
设f(n)(x。)存在,且f(x。)=fˊ(x。)=…=f(n)(x。)=0,证明f(x)=o[(x-x。)n](x→x。).
设函数f(x)对于闭区间[a,b]上的任意两点x,y,恒有|f(x)-f(y)|≤L|x-y|,其中L为正的常数,且f(a)·f(b)<0.证明:至少有一点ε∈(a,b),使得f(ε)=0.
求下列微分方程的通解:(1)yˊ+y=e-x;(2)yˊ+2xy=4x;(3)xyˊ=x-y;(4)(x2+1)yˊ+2xy=4x2;(5)xyˊ+y=xex;(6)yˊ+ytanx=cosx;(7)xyˊ+(1-x)y=e
微分方程y"+y=x2+1+sinx的特解形式可设为
求:微分方程y〞+y=-2x的通解.
设函数y=f(x)具有二阶导数,且f’(x)>0,f(x)>0,△x为自变量x在点x0处的增量,△y与dy分别为f(x)在点x0处对应的增量与微分,若△x>0,则
设随机变量X与Y相互独立,且均服从区间[0,3]上的均匀分布,则P{max{x,y}≤1}=________.
设0<a<1,证明:方程arctanx=ax在(0,+∞)内有且仅有一个实根.
随机试题
计算机硬件系统中运算器的主要功能是执行________。
医学心理学的研究对象不包括
某女,55岁,面色萎黄,唇甲色淡,头晕眼花,脉细。医师辨证后处方为四物合剂。为减少服药品种,针对气血两虚之证,宜选用的中成药是()
吐温类溶血作用由大到小的顺序为
关于财产租赁的转租问题,下列说法中,正确的是()。
下列各项业务中,属于增值税征收范围的是()。
按职业性质区分,国际入境旅游导游员又可分为()。
与只操纵单个变量的实验设计相比,能同时操纵多个自变量的实验设计的优点有
Acontrastisoftenmadebetweenbusiness,whichiscompetitive,andgovernment,whichisamonopoly.
Astherecentcourgette(密生西葫芦)crisisandshortagesoflettuce,eggplantsandbroccoli(绿花椰菜)haveshown,Spain’sfameastheveget
最新回复
(
0
)